
CO08CH05-Holmes-Cerfon ARI 21 February 2017 8:52

Sticky-Sphere Clusters
Miranda Holmes-Cerfon
Courant Institute of Mathematical Sciences, New York University, New York 10012;
email: holmes@cims.nyu.edu

Annu. Rev. Condens. Matter Phys. 2017. 8:77–98

First published online as a Review in Advance on
December 7, 2016

The Annual Review of Condensed Matter Physics is
online at conmatphys.annualreviews.org

https://doi.org/10.1146/annurev-conmatphys-
031016-025357

Copyright c© 2017 by Annual Reviews.
All rights reserved

Keywords

sphere packing, free energy, transition rate, colloid, self-assembly,
emergence

Abstract

Nano- and microscale particles, such as colloids, commonly interact over
ranges much shorter than their diameters, so it is natural to treat them as
“sticky,” interacting only when they touch exactly. The lowest-energy states,
free energies, and dynamics of a collection of n particles can be calculated in
the sticky limit of a deep, narrow interaction potential. This article surveys
the theory of the sticky limit, explains the correspondence between theory
and experiments on colloidal clusters, and outlines areas where the sticky
limit may bring new insight.
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1. INTRODUCTION

What can a small cluster of particles say about the materials we encounter in everyday life?
Although we cannot bang it with a hammer, wrap it around our shoulders, or throw it a ball, the
information contained in the ground states of small systems is nevertheless critical to explaining
many physical and biological properties of larger ones. Condensed matter phenomena such as
nucleation, the glass transition, gelation, epitaxial growth, aging, and the structure of liquids
all have explanations rooted in the geometrically possible ways to arrange a small collection of
particles (1–8). These possibilities also act as constraints on biological systems, like proteins,
viruses, chromatin, and microtubules, that fold, self-assemble, metabolize, or self-replicate. Small
clusters have been used to design synthetic systems that perform these functions, bringing insight
to the geometrical origins of biological complexity (9, 10). Such synthetic systems are also of
independent interest as we seek to design materials with new properties that may assemble or heal
themselves (11–15).

For many of the phenomena above it is natural to consider particles that interact over distances
much smaller than the diameter of the particles. Such short-ranged interactions occur for a wide
range of nano- and microscale particles, like colloids, where longer-ranged interactions such as
electrostatic forces may be screened by ions in the fluid medium (16, 17). Common methods to
create short-ranged attractive interactions include adding a depletant to a solution (18) or coating
the particles with strands of complementary DNA, which acts like velcro when they get close
enough (19–23). Colloids are convenient systems with which to study material behavior because,
although they can be small enough to be thermally excited and they can be buoyancy matched
to be suspended in a fluid, they are still big—big enough that they can be treated theoretically as
classical bodies, and big enough that they can be studied experimentally more easily than atoms
or molecules (16). There is also an exciting possibility of using colloids to design new materials,
because they can be synthesized to have a plethora of shapes, sizes, and interaction structures so
the parameter space of building blocks is very large (24).

This review describes the recent progress in understanding small clusters of particles interacting
with a short-ranged attractive potential, focusing primarily on modeling clusters of colloids. It
describes a theoretical framework, the computational apparatus that supports it, and experimental
measurements that validate this framework. It does little to explain how this framework may be
applied to glean insight into scientific questions, and it does not broach the significant literature
on simulating systems that are close to sticky (e.g., 25–28). One reason for this focus is that
the framework is relatively new and under development. Another is that the ideas and tools are
expected to apply to more general systems than clusters, like jammed or glassy systems (29, 30),
silicates (31), or origami (32–34), which can be modeled as objects linked by soft, stiff constraints,
even when the interactions are purely repulsive. It is hoped that by focusing on the theoretical
apparatus, connections to other fields may be easier to make.

The framework to be described is different from the traditional approach to energy landscapes,
which, in its simplest form, characterizes a high-dimensional energy landscape by a set of local
minima and transition states (2, 35). The local minima represent metastable states where a system
spends long amounts of time, and the height of the transition states (usually saddle points) de-
termines the rate of transition between minima through the Arrhenius formula. There are many
sophisticated techniques for computing the local minima and transition states and for building
upon these ideas, which together have yielded an extremely powerful set of methods that have
brought insight to a great many atomic, molecular, and condensed matter systems (e.g., 36, and
references therein).
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Figure 1
(a) Traditional schematic of an energy landscape. Transitions between local minima occur at low-lying
saddle points, whose heights determine the rate of transition. (b) Colloidal energy landscape. The regions
between the local minima are nearly flat so the dynamics on these regions are mostly diffusive. Therefore,
the size and shape of each region are also important factors in determining the transition rate. Adapted from
Reference 37 with permission.

Yet, for colloidal clusters these methods suffer from a few disadvantages. One is that the
energy landscape depends sensitively on the interaction potential, which is often not well known
in soft matter systems. Even when it can be estimated, the computations must be redone for
each distinct potential. In addition, because the methods are based on searching the landscape
stochastically, there is no way to guarantee they have found all the important pieces of it. Finally,
describing the dynamics by the heights and locations of the saddle points, or even the full transition
paths themselves, becomes less accurate as the potential narrows, except when the temperature is
unrealistically low.

The reason this dynamical description breaks down is illustrated in Figure 1. Panel a shows a
traditional schematic of an energy landscape, usually drawn as a hilly surface. The local minima live
in smooth basins of attraction, which are joined together by smooth saddle points, whose heights
determine the rate of transition between the basins. Panel b is a schematic of a colloidal energy
landscape, where the interactions between particles are short-ranged. The basins of attraction
are much narrower, and the regions in between are much flatter in comparison. No amount of
information at a single point (height, curvature, etc.) will determine the rate of transition between
the basins; one needs to know something about the size and shape of the whole transition region.

This article considers the energy landscape and dynamics of a collection of spherical particles
when the range of interaction goes to zero—this is the so-called sticky limit. In this limit the free
energy landscape is given by a set of geometrical manifolds (shapes of different dimensions), plus
a single parameter that incorporates all system-dependent information such as the interaction
potential and temperature. The manifolds depend only on the geometry of the particles and,
combined with the dynamical equations defined on the manifolds, provide the starting point from
which any quantity characterizing the system—equilibrium or nonequilibrium—can be computed
for arbitrary potentials.

We proceed as follows. In Section 2, we describe the set of rigid clusters of n spherical particles,
which are local minima on the energy landscape in the sticky limit. In Section 3, we consider the
free energy of clusters, both rigid and floppy. We summarize the theoretical predictions, show
that they generally agree with experimental measurements, and explain situations they cannot yet
describe because of singularities in the sticky limit. Section 4 introduces the equations describing a
cluster’s dynamics in the sticky limit and shows they can be used to predict experimental transition
rates. Finally, in Section 5, we explain how the sticky limit may give insight into systems other
than clusters.
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2. RIGID CLUSTERS

When the interaction potential between particles is extremely narrow, then to a first-order ap-
proximation it can be treated as a delta function. In this case particles only interact when they are
exactly touching, and the only energy barriers correspond to breaking a contact. If the particles
are spheres with identical interactions, then there is a nice relation between clusters that are en-
ergetic local minima and the mechanical properties of a cluster as a framework. That is, a cluster
is typically a local minimum if it has no internal degrees of freedom: It cannot move around while
maintaining all contacts, except by rigid body motions. This means it is rigid when thought of as
a framework (graph), where the sphere centers are the vertices (hinges) and each contact is a bar
(edge). If a cluster is floppy, i.e., not rigid, then it can typically deform until two spheres come
into contact, which lowers its potential energy without crossing an energy barrier.1

Finding the local minima on this delta-function energy landscape is therefore equivalent to
finding the ways that n spheres can be arranged into a rigid cluster, a problem first suggested
by Arkus et al. (38). This problem is conceptually more appealing than minimizing an energy
function because one can potentially prove whether the solution set is complete (e.g., 39, 40). In
this section, we focus on the geometry of rigid clusters. First, we define rigidity and explain how it
can be efficiently tested, then we qualitatively describe the known set of rigid clusters, and finally
we survey methods to find them.

2.1. Setup

Let a cluster be represented as a vector x = (x1, x2, . . . , xn) ∈ R
3n, where xi = (x3i−2, x3i−1, x3i ) is

the center of the ith sphere. The cluster has m pairs of spheres in contact E = {(i1, j1), . . . , (im, jm)}.
For each pair (i , j ) in contact there is an algebraic equation

|xi − x j |2 = d 2
ij , (i , j ) ∈ E, (1)

where dij is the sum of the two radii. Hereafter, we consider identical spheres with unit diameters
(hence dij = 1) and additionally require that spheres not overlap, so |xi − x j | ≥ 1 for all i �= j .
This system can be represented by an adjacency matrix A by setting Aij = 1 if spheres i , j are in
contact; otherwise Aij = 0.

A cluster is defined to be rigid if it lies on a connected component of the solution set to
Equation 1 that contains only rotations and translations (41–43). Equivalently, a cluster is rigid if
it is an isolated solution to Equation 1, after factoring out rigid-body motions (33). Physically, being
rigid means the cluster cannot be continuously deformed by any finite amount while maintaining
all contacts (bonds.)

2.2. Alternative Concepts of Rigidity

This notion of rigidity is nonlinear, and there is no way to test it efficiently (33). In this section,
we consider several alternative concepts of rigidity that are easier to test. These ideas are closely
linked to Maxwell counting arguments used to study isostatic networks (e.g., 44), and we point
out the correspondence.

1Another possibility is the cluster could deform continuously without forming a contact, like moving on a circle. A floppy
cluster with this property would still be classified as a local minimum, albeit a degenerate one.
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The first concept is minimal rigidity,2 a term introduced in this context by Arkus et al. (38).
A cluster is said to be minimally rigid if it has 3n − 6 contacts and if each particle has at least 3
contacts. This comes from counting the constraints that are necessary generically to remove all
degrees of freedom: There are 3n variables for the sphere positions, and 6 rigid-body degrees of
freedom, so generically one needs 3n − 6 equations to obtain an isolated solution. This condition
is neither necessary nor sufficient for rigidity, but it is easy to test.

A richer and more rigorous concept comes from considering first- and second-order pertur-
bations to a particular solution x0 to Equation 1. Suppose there is a continuous path x(t) with
x(0) = x0. Taking one derivative of Equation 1 shows that

R(x0)x′|t=0 = 0, (2)

where R(x0) is half the Jacobian of Equation 1 and is often called the rigidity matrix. A solution
x′|t=0 is called a first-order flex or just flex, and the flex is trivial if it is an infinitesimal rigid-body
motion. Physically, a flex is a set of velocities assigned to the particles that maintain the contacts
to first order. Let V be the space of nontrivial flexes and let dim(V) = N f . If N f = 0, then the
cluster is infinitesimally rigid or first-order rigid. This is sufficient for the cluster to be rigid (42).

If a cluster is not first-order rigid, then it is because either the number of contacts is too small or
the equations of Equation 1 are linearly dependent, becoming “tangent” in some high-dimensional
space. In the latter case the cluster has an interesting mechanical property: There is a set of forces
that can be put between the particles in contact so the cluster is in mechanical equilibrium. Such
a distribution of forces is called a state of self-stress and is in one-to-one correspondence with
the elements in the left null space of the rigidity matrix (42, 44). Call this space W , and let
dim(W) = N s. The number of variables, contacts, flexes, and states of self-stress are related by
the rank-nullity theorem in linear algebra,

N f − N s = 3n − 6 − m. (3)

This equation, often described as Calladine’s extension (46) of the Maxwell rule (47), has played
an important role in the physics literature. It has been applied to a variety of materials that can
be characterized by their set of contacts, such as random packings, jammed or glassy systems, or
synthetic materials based on periodic frameworks (e.g., 44, and references therein). Yet, though
Equation 3 moves beyond minimal rigidity by characterizing additional mechanical properties, it
is still a linear theory.

To move toward a nonlinear concept of rigidity, we continue the Taylor expansion. Suppose
we have a nontrivial flex x′|t=0 and would like to know if it extends to a finite motion. Taking two
derivatives of Equation 1 gives

R(x0)x′′|t=0 = −R(x′)x′|t=0. (4)

We must solve this for x′′|t=0. If we cannot, then x′|t=0 does not extend to a second-order motion.
If there is no nontrivial flex for which it is possible to solve Equation 4, then the cluster is second-
order rigid. This is also sufficient for the cluster to be rigid (42).

Testing for second-order rigidity is too difficult, but we can strengthen the concept without
losing much physics. Notice that, by the Fredholm alternative, we can solve for x′′|t=0 if and only
if there exists v ∈ V such that wT R(v)v = 0 for all w ∈ W . The cluster is second-order rigid when
this is not true: For each v ∈ V , there exists a w ∈ W such that wT R(v)v �= 0. Finding a w that

2This definition is different from that in rigidity theory, which calls a graph minimally rigid (in dimension 3) if it has exactly
3n − 6 edges and it has an infinitesimally rigid realization in R

3 (45).
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blocks each v separately is too hard, but we may be able to find a single w that blocks all v. If there
exists a w ∈ W such that

wT R(v)v > 0 ∀ v ∈ V , (5)

then the cluster is clearly second-order rigid, hence rigid. A cluster that satisfies Equation 5 is
called prestress stable.

Prestress stability is stronger than second-order rigidity, yet it is a large and useful step beyond
linear theory. One major advantage is that it can be tested efficiently. Notice that the inner product
in Equation 5 can be written as vT �(w)v, where �(w) is a matrix constructed from the coefficients
of w. This matrix lives in a linear space of matrices, and our task is to find a matrix in this linear
space that is positive definite. This could be done using semidefinite programming methods (43,
and references therein), though it has yet to be implemented in practice.

2.3. The Set of Rigid Clusters

We next discuss the set of known rigid clusters and some of their interesting geometrical and
statistical properties. All clusters listed here have been tested for prestress stability (49). The total
number for each n is listed in parentheses, with enantiomers lumped into a single state.

� n = 3,4,5 (1;1;1) The sole rigid clusters are the triangle, tetrahedron, and bipyramid formed
by gluing two tetrahedra together.

� n = 6 (2) This is the smallest interesting system because it has more than one rigid cluster:
the polytetrahedron formed by gluing three tetrahedra together, and the octahedron, which
does not contain any tetrahedra (Figure 2). The octahedron has 24 elements in its symmetry
group, whereas the polytetrahedron has only 2, a fact that is important in determining the
free energy in Section 3.

� n = 7 (5) Three clusters are obtained by gluing a sphere to the polytetrahedron, a fourth
cluster is obtained by gluing a sphere to the octahedron, and the fifth one cannot be decom-
posed into any smaller rigid clusters except triangles (Figure 3). Two clusters differ by a
tiny amount. One is formed by stacking tetrahedra around a central axis, which cannot quite
form a closed loop. By breaking the contact along the central axis, the two spheres on the
axis can move apart by ≈0.05 sphere diameters and the loop can close into a pentagon.

� n = 8 (13) All clusters but one are formed by gluing a sphere to a cluster of n = 7.
� n = 9 (52) One cluster stands out because it has an infinitesimal degree of freedom. It

is made of two bipyramids, which share a vertex and are held together by three parallel
contacts (edges) (Figure 4). When the bipyramids twist relative to each other, the lengths
of the edges do not change to first order in the amount of deformation, so the twist is an
infinitesimal degree of freedom. The lengths do change to second order, so the cluster is
rigid. We call a cluster that is rigid but not infinitesimally rigid a singular cluster.

� n = 10 (263) This is the smallest system that contains both hyperstatic clusters, those with
more than the 3n −6 contacts required generically for rigidity, as well as hypostatic clusters,
those with fewer than 3n−6 contacts. There are three hyperstatic clusters and their existence
is expected, because a close-packed cubic lattice has an average of 6 contacts per sphere.
There is one hypostatic cluster and its discovery was surprising. It is “missing” one contact
and is shown in Figure 5. The red sphere lies in the plane of the others it touches, a property
common to many hypostatic clusters. A good analogy is to imagine a piece of fabric in a
plane that is clamped at its boundaries; the fabric cannot move perpendicular to the plane
without stretching.
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Figure 2
Features of the landscape for n = 6 spheres. (a) Experimental images of the polytetrahedron and octahedron, and the corresponding
hard-sphere packings. (b) Theoretical (bars) and experimental (red dots) equilibrium probabilities, measured in Reference 48. (c) A
two-dimensional manifold from the n = 6 landscape. Corners are rigid clusters: one octahedron, and three polytetrahedra equivalent
up to permutations. Edges are one-dimensional manifolds formed by breaking a bond from a rigid cluster; these are the lowest-energy
transition paths between rigid clusters. The interior represents all states accessible by breaking two bonds from a rigid cluster and
moving on the two internal degrees of freedom. This set of states is a two-dimensional manifold that has been parameterized and
triangulated in the plane. Panels a and b adapted from Reference 48. Reprinted with permission from AAAS. Panel c adapted from
Reference 37 with permission.

Figure 3
Rigid clusters of n = 7 spheres. The first and second clusters differ by the short path obtained by breaking the bond on the central axis
of the first one.

1.0 μm

ba c

Figure 4
A singular rigid cluster first occurs at n = 9. (a) Experimental image, (b) corresponding sphere cluster, and
(c) framework, with arrows indicating the singular motion. Panel a reprinted from Reference 48 with
permission from AAAS.
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a b

c
Defects

Figure 5
Some interesting rigid clusters. (a) The smallest hypostatic cluster, n = 10. (b) Four clusters with the same adjacency matrix, n = 14,
colored to aid identification. (c) The seven clusters for n = 19 with the maximal number of contacts. All but one are fragments of a
close-packed lattice (defects in green.)

� n = 11,12 (1659;11,980) The first pair of geometrically distinct clusters with the same ad-
jacency matrix occurs at n = 11. That this is possible is not surprising from a mathematical
perspective, because a system of nonlinear equations can have multiple solutions, but it is
difficult to construct examples for small n by hand.

� n = 13 (98,529) There are now clusters with a “caged” sphere, with no room to make another
contact. Of the 8 clusters with the maximum number of contacts, two of these contain a caged
sphere: one is a fragment of a face-centered cubic (fcc) lattice, the other is of a hexagonal
close-packed lattice. The latter is singular, along with one more ground state.

� n = 14 (895,478) This set contains a great many peculiar clusters: hypostatic clusters missing
three contacts and sets of four clusters sharing the same adjacency matrix, among many
others (Figure 5). The sheer number of clusters means the data set can act as a catalog to test
questions about the geometrical possibilities for arranging objects into a rigid configuration,
with implications beyond clusters to general graphs. For example: Is a rigid framework with
more than 3n − 6 contacts always nonsingular? No. Is a framework with 3n − 6 contacts
always rigid? No. If a rigid framework has at least 4 contacts per sphere, is it always the
unique solution for that adjacency matrix? No. Does an isometry of an adjacency matrix
always correspond to a rotation or reflection? No. One can often find small examples to test
geometrical conjectures.

� n = 15–19 Not all clusters have been listed, but it is expected that those with the maximum
number of contacts have been found. This maximum number continually increases: It is
3n + {−1, 0, 1, 2, 3} for n = 15, 16, 17, 18, 19, respectively. There are several maximally
contacting clusters for each n. Almost all are fragments of a close-packed lattice, and those
that aren’t are usually close, with defects only on the surface (Figure 5).

The total number of clusters appears to increase combinatorially with n (49), as roughly
2.5(n – 5)!, at least for the small values of n in the data set. If this growth rate holds for larger n,
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it would be larger than the exponential increase of local minima claimed for clusters with smooth
potentials (2). One factor which could lead to superexponential growth is that the minimum gap
between noncontacting spheres in a rigid cluster appears to become arbitrarily close to 1; for
n = 14 it is 1.3 × 10−5. For a smooth potential such a small gap would cause particles to rearrange
and lower the overall energy, perhaps merging nearby rigid clusters into a single local minimum.

That the lowest-energy clusters are close-packing fragments, or nearly so, is in marked contrast
to clusters with a non-delta-function potential such as Lennard-Jones or atomic clusters. These are
known to have special values of n, so-called magic numbers, where a high-symmetry icosahedral
arrangement is an energetic local minimum, and this arrangement can be the lowest-energy state
even for n ≈ 103 (35, 50–52). Such arrangements are possible when the potential has some width
because the spheres can rearrange a little bit to create new bonds, whose additional energy more
than compensates the stretching of the other bonds (4, 53).

Interestingly, it appears that the proportion of singular clusters is nearly constant: It is 3, 2.9,
2.7, 2.5% for n = 11, 12, 13, 14, respectively (49). Whether these frequencies are significant or
not in a thermal system depends on the entropy of the clusters, a question addressed in Section 3.

2.4. How to Find Rigid Clusters

Three distinct ideas have been proposed to find the set of rigid clusters using geometrical tech-
niques, and we now describe them. In addition, one may introduce a specific short-ranged potential
such as the Morse potential, to observe approximate rigid clusters in simulations (54) or find them
by searching the energy landscape (55, 56), though the range must be extremely small to find all
rigid clusters (53).

2.4.1. Solving from adjacency matrices. One can imagine a brute-force method to find all rigid
clusters: First, list all adjacency matrices, then, solve each system of equations for the coordinates,
and finally, determine if the solution is isolated. This is a finite yet Herculean task, because the
number of adjacency matrices grows superexponentially with n as 2n(n−1)/2. Yet, this is exactly what
Arkus et al. (38, 57) attempted, using an iterative method to reduce the work involved. The key
step is to identify patterns in the adjacency matrix for which the distances have already been solved
for analytically or to identify patterns that imply overlapping spheres or no solutions. A pattern
that has not been seen is solved for by hand. Once the adjacency matrices at a given n have been
categorized, these become new patterns to solve or eliminate solutions for larger n. For example,
many clusters contain a bipyramid, so if there is a submatrix corresponding to the bipyramid’s
adjacency matrix, then these spheres have known relative positions.

Arkus et al. used this approach to enumerate minimally rigid clusters of n ≤ 10 spheres. Here
the method reached its limits, because there were 94 patterns that had to be solved by hand.
Although this is potentially a rigorous, analytic way to obtain the complete list of minimally rigid
clusters, the iterative step was implemented on a computer so round-off errors could cause contacts
to be missed or formed extraneously. In addition, it is not clear whether the analytic rules were
applied completely, for example, whether the authors considered the multiple possible solutions
for certain patterns in the adjacency matrix. Their list has been corroborated by subsequent studies
(49, 58) with the only discrepancy being the hypostatic cluster that they did not look for.

Another group looked for minimally rigid clusters using a similar method, but instead of solving
semianalytically for each cluster, they used Newton’s method with random initial conditions to
find a solution for Equation 1. They enhanced the pattern classification by drawing rules from
graph theory such as the nonembeddability of certain graphs [though not all their rules were
correct (59)]. Initially, their method was applied to clusters of n ≤ 11 spheres (58), and later with
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parallelization it handled n ≤ 13 (60). They did not consider clusters with the same adjacency
matrix, and Newton’s method is not guaranteed to find all solutions, so the data set cannot be
complete.

Methods based on adjacency matrices are limited in large part by the time it takes to list all
nonisomorphic adjacency matrices initially. This motivates the need for a bottom-up algorithm
that builds clusters out of what is currently known, rather than starting from a larger set of
possibilities and deleting. The next two methods are attempts to do this.

2.4.2. Solving by path-following. Another method to enumerate rigid clusters was based on an
observation about their dynamics: Typically the easiest way to get from one rigid cluster to another
is to break a contact, then deform the cluster until two spheres collide. This can be turned into an
algorithm to find rigid clusters by starting with a single rigid cluster, following all one-dimensional
transition paths leading out, and repeating for all rigid clusters found at the ends.

This algorithm was implemented numerically by Holmes-Cerfon (49) to list rigid clusters for
n ≤ 14 completely, and a subset for n ≤ 19 that is expected to contain clusters with the maximum
number of contacts. Each cluster was tested for prestress stability, so they are rigid to numerical
tolerance. Because this method tested a nonlinear notion of rigidity and did not make assumptions
about the number of contacts, it found a more complete, geometrically richer set of rigid clusters.
Of course, the method is sensitive to several numerical parameters, so it is not guaranteed to find
all prestress stable clusters nor all the one-dimensional transition paths. Even if it could, it would
still not find all prestress stable clusters because it can only reach those connected to the starting
cluster by one-dimensional paths. Indeed, Holmes-Cerfon discovered a cluster that cannot be
found by this method.

A by-product of this algorithm is the set of transition paths. These have the interesting property
that sometimes they are topologically circles: After a contact is broken, the cluster deforms until
it forms exactly the same contact in exactly the same configuration. This suggests there could be
“circular” floppy clusters that may deform indefinitely without becoming rigid. These would be
metastable states that should be treated as local minima, like rigid clusters. So far no method has
found, or even proposed to find, a small example.

2.4.3. Toward a complete set of rules. A third idea is based on an observation by Charles
Wampler (unpublished data) that many rigid clusters are formed by gluing together smaller ones,
and one can derive a complete set of gluing rules to form minimally rigid clusters simply by
counting degrees of freedom. Consider a collection of R rigid clusters and P isolated spheres.
This has a total of 6R + 3P degrees of freedom. Suppose we can glue together either (a) two
vertices (on different clusters), (b) two edges, or (c) two faces. Additionally, we can (d ) add a
distance constraint between two spheres on different clusters. If there are V , E, F , C instances of
each of these rules, respectively, they remove a total of 3V + 5E + 6F + C degrees of freedom.
Equating the number of constraints to the number of degrees of freedom of the resulting cluster
gives

3P + 6R − C − 3V − 5E − 6F − 6 = 0. (6)

Each integer solution to this equation gives a different gluing rule. One is {R = 1, P = 1, C = 3},
which says to glue a sphere to a rigid cluster using three contacts. This can form a large fraction
of rigid clusters and is how some of the earliest studies of energy landscapes searched for clusters
(61). Another rule is {R = 2, P = 0, C = 3, V = 1}, which builds the n = 9 singular cluster out of
two bipyramids that share a vertex and have three additional distance constraints. Each rule gives
a system of algebraic equations that is easier to solve than the complete set of distance equations.
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The rules can also be extended to floppy clusters (62). Systematically investigating these ideas is
a work in progress.

3. FREE ENERGY OF STICKY-SPHERE CLUSTERS

3.1. A Picture of the Landscape

The potential energy of a sticky-sphere cluster is the same for all clusters with the same number
of contacts, yet in a thermal system, the clusters they approximate can occur with vastly different
frequencies. What distinguishes them is entropy—the size of space they can explore and still keep
their identity (17). Calculating this entropy requires a model for the pair potential, because a perfect
delta function is not physical. Real potentials have a finite range, which makes a contribution to
the entropy that does not vanish as the range decreases. A natural approach is to start with a
particular potential and consider the Boltzmann distribution in the limit as the range goes to zero
(and the depth simultaneously goes to ∞.) The limit was originally considered by Baxter (63) for a
square-well potential, and more recently it was considered for smoother potentials (37). Somewhat
remarkably, the limiting entropy does not depend on the choice of potential (apart from a scaling
factor).

This limit also allows us to compute the entropy of floppy clusters. These clusters have internal
degrees of freedom, so there is a positive-dimensional region in configuration space they can access
by deforming while maintaining their contacts. On this region the potential energy is constant.
Each region is typically a manifold, with dimension equal to the number of internal degrees of
freedom of the cluster [after modding out by SE(3) to obtain a quotient manifold]. A rigid cluster
is a zero-dimensional manifold or a point. If we break a bond in a rigid cluster, we obtain a cluster
with one internal degree of freedom, which is a one-dimensional manifold or a line. Breaking two
bonds gives a two-dimensional manifold, whose boundaries are the lines, and continuing up in
dimension, we obtain the entire energy landscape as the union of manifolds of different dimensions,
glued together at their boundaries. A helpful schematic is of a high-dimensional polytope, whose
faces have edges, which in turn have lower-dimensional edges, and so on.3 In the sticky limit,
the Boltzmann distribution concentrates on each of these manifolds, becoming a sum of singular
densities of different dimensions. Figure 2c shows an example of a two-dimensional manifold and
its one- and zero-dimensional boundaries.

3.2. Partition Functions in the Sticky Limit

We describe the sticky limit for smooth potentials though the argument applies nearly verbatim
for a square-well one. Consider a cluster with m bonds as in Equation 1 that lives on a region
�̄E,ι in configuration space (the subscript ι is included to index the disconnected, nonisomorphic
regions with the same constraints). We assume the constraints are regular everywhere on �̄E,ι,
meaning the rank of the rigidity matrix equals 3n − m. We let �E,ι = �̄E,ι/SE(3) be the quotient
space formed by identifying all points that are the same up to rigid-body motions and assume this
quotient space is a Riemannian manifold.

We take the potential energy of a cluster to be U (x) = ∑
i �= j U p(|xi − x j |), a sum of pair

potentials U p(r) depending on distance r between each pair. The pair potential is assumed to
have a minimum at d , the sphere diameter, to decay rapidly to zero beyond some cutoff rc, and

3The regions are not always manifolds; in general they are algebraic varieties. Their topology is almost certainly more
complicated than that of a polytope.
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Figure 6
(a) A sketch of the pairwise potential. It has a minimum at the particle diameter d , decays beyond a cutoff r > rc , and increases rapidly
for r < d . (b) Toy models to understand the free energy of singular clusters. (i ) A rigid cluster is formed at the intersection of two lines.
The entropy in the sticky limit is proportional to the volume of the lines when thickened by ε 
 1, which is ∝ ε2. (ii ) A singular cluster
may be the intersection of a parabola and a tangent line. The volume of the thickened curves is ∝ ε3/2, which goes to zero more slowly
than in the regular case.

to increase rapidly to ∞ for r < d (Figure 6). The sticky limit occurs when the pair potential is
both narrow and deep. This can be achieved technically by shrinking the width by some parameter
ε 
 1, and scaling the depth by a function C(ε), chosen so the nondimensional partition function
for a single contact is constant. For finite ε this constant is proportional asymptotically to

κ = 1
d

√
c ve−βU 0√

βU ′′
0

, (7)

where c v = 2π (π/2) if the potential is soft (hard), U0 = Up(d ), U ′′
0 = U ′′

p (d ), and β = (kbT )−1 is
the inverse of temperature T times the Boltzmann constant. The constant κ has been called the
sticky parameter, because it measures how sticky the particles are: The larger it is, the more time
they like to spend in a cluster with more contacts. It is a natural way to measure the strength of a
short-range bond: The depth by itself is misleading, because bonds break more rapidly in a narrow
well. In the sticky regime, the width w and Boltzmann factor combine to give κ ≈ e−βU0 ·w, which
must be not too large or small for the limit to converge to a finite value.

The partition function for �̄E,ι is the integral of the Boltzmann distribution over a neighbor-
hood NE,ι associated with the cluster, obtained by fattening the constraints by ε so the bonds
can vibrate, allowing for translations, rotations, and possibly reflection, and including all geo-
metrically isomorphic copies of the manifold obtained by permuting identical particles. After
nondimensionalizing lengths, the partition function is

ZE,ι = 1
d 3n

∫
NE,ι

e−βU (x)dx. (8)

This expression is evaluated in the limit as ε → 0. The result, neglecting small differences in
excluded volume and factors that are the same for all clusters, is

ZE,ι = κmz(g)
E,ι, with z(g)

E,ι, = 1
d 3n−m

∫
�E,ι

|I(x)|1/2

σ

3n−6−m∏
i=1

λ
−1/2
i (x)μE,ι(dx). (9)

The integral is with respect to the natural volume form μE,ι on the quotient manifold (37). Here
σ is the symmetry number, which counts the number of permutations of identical particles that
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are equivalent to an overall rotation (or reflection, if enantiomers are lumped into one state.) The
matrix I is the moment of inertia tensor formed by setting all particle masses to 1 (64); the square
root of its determinant is proportional to the volume of the space of rotations. The λi are the
nonzero eigenvalues of RT R, where R(x) is the rigidity matrix defined in Equation 2. They arise
because in the sticky limit the dynamical matrix approaches ∇∇U = U ′′

0 RT R, and the integral
over vibrational directions is evaluated in a harmonic approximation.

The limiting partition function factors into two parts: one is the sticky parameter, which
depends on the pair potential, temperature, and particle diameter, and the other is the geometrical
partition function z(g)

E,ι, so-called because it depends only on the relative positions of the spheres but
not on any system-dependent quantities. This separation has several advantages, both conceptually
and practically. Conceptually, it is helpful because it makes transparent which parts of the partition
function will change with parameters in the system and which are fundamental properties of the
particles themselves. For example, from the observation that clusters with the same number of
bonds have the same power of κ , we see their relative probabilities must be governed purely
by geometry—they will not change with parameters such as temperature. Computationally, it
is helpful because though calculating the integral in Equation 9 is a challenge, it only needs to
be done once—different temperatures or interaction potentials are accounted for by varying the
single parameter κ . If the particles have different, specific interactions, one can easily adapt this
framework by allowing the sticky parameters for different contacts to vary (65). When some
particles do not interact at all, then there are local minima that are themselves floppy (15). In
this case computing the integral Equation 9 is critical to understanding their entropy, because it
cannot be obtained through any local approximation.

A first step to calculating the integrals in Equation 9 was taken by Holmes-Cerfon et al. (37),
who calculated the 0,1,2-dimensional integrals for each of n = 6, 7, 8 by explicitly parameterizing
the manifolds (Figure 2). This is straightforward in one dimension but much less so in two. To
calculate integrals over higher-dimensional manifolds, there are sometimes natural variables with
which to parameterize, such as the distances between nonbonded spheres (66), but in general
randomized methods are probably required.

3.3. Experimental Measurements of Free Energy

Experiments can isolate small collections of colloidal particles, and measure the configurations
they assemble into, at a level of detail completely inaccessible to atomic clusters. This has been
a way to validate the calculations above, showing they can quantitatively describe a real system,
and also to point to missing ingredients, such as neglected physics or situations when the sticky
limit breaks down (48, 65, 67, 68). These measurements have proven educational because colloidal
systems follow the laws of classical statistical mechanics, about which there is still some confusion
as these laws are often taught by analogy to quantum mechanics (64). Experiments have also
highlighted the stark difference between sticky hard sphere and longer-range atomic clusters.

This difference was strikingly illustrated with experiments by Meng et al. (48). They isolated
small numbers of 1-μm colloidal spheres in microwells that interacted attractively via depletion
over a range roughly 1.05 times their diameter. The spheres clumped up into clusters large enough
to see by eye in a microscope, so Meng et al. could identify the rigid cluster that each one most
resembled. The observed frequency of each cluster is its equilibrium probability, which in the
sticky limit is proportional to the partition function (Equation 9).

The experimental and theoretical occupation probabilities agreed well. The best agreement
was at n = 6 (see Figure 2), where the octahedron occurred with experimental (theoretical)
frequencies of 95.7% (96%), and the polytetrahedron with frequencies of 4.3% (4.0%). This drastic
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difference in frequencies was itself a major discovery. The octahedron is more symmetric than the
polytetrahedron, so it would be favored energetically in a cluster with a longer-range potential.
Even for the Lennard-Jones 6-12 potential, often used to model short-ranged interactions, the
octahedron is 0.3 units lower in energy than the polytetrahedron (69), so it would be favored at low
temperature. In a sticky-sphere system the frequency difference can only be attributed to entropy,
which is suppressed by the symmetry number.

The theory and measurements begin to disagree for clusters with small gaps comparable to the
width of the actual potential, which happens for some clusters at n = 8. For n ≥ 9 the number of
samples was not large enough to obtain statistics on all clusters, but those observed point to some
interesting trends. The singular cluster at n = 9 was the most frequent by far, occurring about
10% of the time. For n = 10, singular and hyperstatic clusters predominated, with frequencies
of about 20% and 10%, respectively. This suggests a competition between singular clusters and
extra contacts as n increases.

A similar set of experiments was performed by Perry et al. (68) to analyze floppy clusters. They
created a two-dimensional system in which spheres moved on a plane, like discs, and interacted
through a depletion force. The particle locations were automatically extracted so they could
identify the nearest sticky-sphere manifold and each cluster’s position on it. Perry et al. mainly
studied clusters of six discs, for which one can verify there are three rigid clusters, all fragments
of a hexagonal lattice. They measured the occupation probabilities of the floppy modes formed
by breaking one and two contacts. By Equation 9, the frequencies conditional on having a certain
number of bonds broken should not depend on the potential, so they can be computed despite
limited knowledge of the electrostatic, van der Waals, and depletion forces that contribute. The
experimentally measured frequencies agreed with those calculated from Equation 9, showing the
sticky-sphere limit applies equally to floppy clusters.

Perry et al. made another important contribution by showing that one can use these coarse-
grained observations to measure κ . Typically, measuring an interaction potential, especially one
that is stiff, requires high-frequency, high-resolution measurements to resolve the details of the
well when two particles are nearly in contact. Predicting κ by first measuring U0, U ′′

0 would be an
experimental tour de force, and estimations gave a range of κ ≈ 2–200. But κ can be inferred from
the macroscopic data by observing that it governs the ratio of occupation probabilities between
manifolds of different dimensions. For discs, this gives

time in rigid clusters
time in 1-bond-broken clusters

= κ2n−3 Z0

κ2n−4 Z1
, where Zi =

∑
(E,ι):dim �E,ι=i

z(g)
E,ι (10)

is the sum of the geometrical partition functions for manifolds of dimension i . The Zi are known
from the theory, and the fraction on the left-hand side is measured experimentally, so one can
solve this algebraic equation for κ . By also comparing the one- and two-dimensional manifolds
and by considering clusters of different sizes, Perry et al. found measurements in the range of
κ ≈ 27–35, which is narrow enough given the measurement and statistical uncertainties. This
method was later used to infer that particles with differing compositions had different interaction
strengths despite the interactions having originated from the same depletant (65).

3.4. Free Energy of Singular Clusters

The free energy of the singular cluster in Figure 4 is not possible to predict using Equation 9,
because the sticky limit relies on a harmonic approximation that fails when the dynamical matrix
acquires an extra zero eigenvalue. Yet, the high frequency with which this cluster was observed in
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experiments suggests that degenerate vibrational degrees of freedom could contribute significantly
to the entropy. How does this additional entropy compare with the energy of an extra contact?

Although the sticky limit diverges for both singular and hyperstatic clusters, it may be possible
to compare the two by considering the leading-order terms in an asymptotic expansion of the
partition function. A simple example shows why. Suppose that “configuration space” is R

2, and
“contacts” are solutions to equations yi (x) = 0, (i = 1, 2.) A “regular cluster” is the point where
two curves intersect nontangentially, as in the solution x = (0, 0) to yi (x) = vi · x = 0, where
v1, v2 ∈ R

2 are linearly independent (Figure 6). For a square-well potential with width ε and
depth U0, the partition function is the integral of the Boltzmann factor over the region � = {x :
|y1(x)|, |y2(x)| < ε}, which equals 4e−βU0 |v1 × v2|−1ε2. This is O(ε2) as ε → 0, as expected because
the volume is two-dimensional.

A “singular cluster” is formed when curves intersect tangentially, such as the intersection
x = (0, 0) of a line y1(x) = x2 = 0 and a parabola y2(x) = x2

1 − x2 = 0. The integral of the
Boltzmann factor over a region of the form � is O(ε3/2) as ε → 0: It goes to zero more slowly
than that for a regular cluster. In the sticky limit U0 is scaled so the partition function for a regular
cluster approaches an O(1) constant, so the partition function for a singular cluster blows up.
However, this toy calculation shows that the leading-order contribution to the partition function
is entirely computable and should depend on both the sticky parameter and one more parameter
characterizing the width of the potential. Calculations extending this argument to clusters that
are second-order rigid are expected to be published in Reference 70.

4. KINETICS

When a colloidal cluster in a rigid state breaks a bond, it doesn’t immediately form another one.
Rather, it wiggles and jiggles its way around its floppy degree of freedom, sometimes coming close
to the original rigid state, sometimes coming close to a different one, before eventually falling into
a well when two particles come into contact (Figure 7). Describing this process and the rate with
which it occurs requires more than simply the height of the energy barrier for breaking a bond;
we need to understand the diffusive process in between.

The sticky limit provides a way to do this. If we model a system with the overdamped Langevin
dynamics, then we can apply the limit of a deep, narrow potential to the Fokker-Planck equation
describing the evolution of the probability density. The limiting equation is a system of coupled
Fokker-Planck equations, one on each manifold that forms the energy landscape, describing the
flow of probability along each manifold and the flux to others in and out of their boundaries.
This system is a complete description of the dynamics in the sticky limit and provides a natural
starting point to describe dynamic phenomena like transition rates between ground states, assembly
pathways to reach the ground states, epitaxy, defect motion, nucleation, and growth, among many
others.

a b

2 μm2 μm4 s4 s0 s0 s 2 s2 s

Figure 7
Transitions happen diffusively along one-dimensional paths. (a) A transition observed experimentally between rigid clusters of discs.
Adapted from Reference 68 with permission. Copyrighted by the American Physical Society. (b) Sketch of selected states on the
transition path. The line segment representing the path is shown with corresponding points in red.
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4.1. Theoretical Calculations

The sticky limit of the Fokker-Planck equation is computed using an asymptotic procedure akin
to boundary layer theory (37). Assuming constant, diagonal diffusivity D, the limiting equation
on manifold �E,ι with m contacts is

∂t PE,ι = D divE,ι

⎛
⎜⎝−PE,ι gradE,ι log hE,ι︸ ︷︷ ︸

effective force

+ gradE,ι PE,ι︸ ︷︷ ︸
diffusion

⎞
⎟⎠ + κ−1

∑
(F ,ν)→(E,ι)

jF ,ν · n̂

︸ ︷︷ ︸
flux to/from �F,ν

. (11)

Here hE,ι(x) = |I(x)|1/2 ∏m
i=1 λ

−1/2
i (x) is the integrand in Equation 9, and PE,ι(x, t) = hE,ι(x)p(x, t) is

a density (with respect to the natural quotient volume form) on manifold �E,ι, from which the actual
probability density on �E,ι is calculated as κm PE,ι. Function p(x, t) is defined everywhere and is the
density of the probability distribution with respect to the equilibrium probability distribution. The
operators gradE,ι and divE,ι are the gradient and divergence with respect to the natural quotient
metric on each manifold. The final term is a sum over fluxes jF ,ν = −D(−PF ,νgradF ,ν log hF ,ν +
gradF ,ν PF ,ν ) such that �E,ι is part of the boundary of �F ,ν , with dim(�F ,ν ) = dim(�E,ι) + 1,
and n̂ is an outward normal vector. System Equation 11 does not yet lump together geometrically
isomorphic manifolds so the index ι now runs over all copies of the manifold obtained by permuting
particles.

We call Equation 11 the sticky Fokker-Planck equations, because they describe a generalization
of a sticky Brownian motion, which is a Brownian motion that has been slowed down on a boundary
in such a way that it spends a nonzero amount of time there (71). In the simplest case where
a particle diffuses on the half-line [0, ∞) with a sticky point at the origin, the sticky Fokker-
Planck equations would be pt = pxx with boundary condition κpt(0) = px(0) or equivalently
κpxx(0) = px(0). Similarly substituting for time derivatives in Equation 11 shows these equations
are really a hierarchy of second-order boundary conditions.

The probability in the interior of each manifold dynamically evolves due to three terms: dif-
fusion on the manifold, forcing on the manifold, and flux from higher-dimensional manifolds.
The forcing is entropic and arises because the vibrational and rotational entropies change along
the manifold; it is the same force obtained by considering a harmonic potential constraining the
system near the manifold (72).

4.2. Transition Rates

If the sticky parameter κ is large, then we expect a cluster to spend most of its time in equilibrium
as a rigid cluster, only occasionally changing shape to another cluster. How and how often do
transitions occur? Intuitively, we might expect a transition happens by a cluster breaking a single
bond and diffusing along its one-dimensional degree of freedom until it forms another bond at the
other end. If so, the rate should be determined by the timescale to diffuse along a line segment.
Indeed, this idea was used by Perry et al. (67), without reference to a sticky limit, to estimate the
timescale to transition between an octahedron and polytetrahedron, and earlier by Ganapathy
et al. (8) to describe a colloid hopping between sites on a hexagonal lattice during epitaxy.

4.2.1. Theoretical transition rates. The picture above is asymptotically correct when the sticky
parameter is large. Transition rates can be calculated exactly from a solution to the backward
Fokker-Planck equation using Transition Path Theory (74, 75). Solving directly is hopeless be-
cause the equations of Equation 11 are all coupled, from the lowest to the highest dimensions, but
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when κ is large they separate asymptotically. To leading order in κ−1 the frequency of transition
between rigid clusters A and B is obtained from the flux of probability along the one-dimensional
paths that connect them, as (37)

νAB = κ−1 D
d 2

Z−1
0

∑
(E,ι)

Q−1
E,ι, QE,ι =

∫
�E,ι

h−1
E,ιds , (12)

where the sum is over all (E, ι) such that �E,ι is a one-dimensional manifold connecting cluster A
to cluster B, and s is an arc-length parameterization of �E,ι. This frequency is the average number
of times a transition between A and B will be observed in equilibrium and is related to the rate of
leaving a certain state to leading order as kAB = νAB/(z(g)

A /Z0) (75).
This expression again conveniently separates into a geometrical part, which can be pre-

computed, and a set of constants that depend on parameters in the system. It is expected to
be more accurate than rates computed from properties of saddle points, as in Transition State
Theory (36, 76). This theory predicts rates of the form ks

AB ∝ β−1zs

z(g)
A /Z

e−βU0 , where zs is a pre-factor

depending on properties of the saddle point, such as its vibrational partition function, and Z is
the total partition function. Although the Arrhenius factors are the same, there is no reason why
zs should bear much relation to the geometric factors in Equation 12, something that has been
confirmed through numerical tests by the author and collaborators.

4.2.2. Experimental measurements of dynamics. These computations were tested directly
in experiments by Perry et al. (68), which counted the number of transitions observed between
each pair of rigid clusters of six discs on a plane. These numbers can be directly compared with
the theoretical prediction of Equation 12 by substituting the values of the constants. The particle
diameter d is known in advance, and the sticky parameter κ was measured separately in Section 3.3,
but the the particle diffusivity D posed a problem. Substituting values for the single-particle
diffusivity in an unbounded three-dimensional domain, as well as near a two-dimensional wall,
gave predicted rates that were roughly six and two times too big, respectively. This is because the
collective motion of the discs during a transition creates a hydrodynamic flow that alters the discs’
mobility and, hence, by Batchelor’s generalization of the Stokes-Einstein relation, their diffusivity
tensor (77, 78). Fortunately, for such a low-dimensional motion the average component of the
diffusivity tensor along each transition path can be measured from the time series of each transition
(Figure 8). Either substituting the measured diffusivity or incorporating the different measured
values for each path gave results that agreed with the measured transition rates. This shows that
the limiting sticky dynamics can predict experimental transition rates but that accounting for
hydrodynamic interactions is critical for obtaining quantitative agreement.

The importance of hydrodynamics in sticky-particle assemblies was also highlighted by Jenkins
et al. (73) to explain the transition observed in a crystal of DNA-linked particles from a body-
centered cubic (bcc) phase to an fcc phase upon annealing (Figure 8). The puzzle is that the
energy of all close-packings is the same, and entropy overwhelmingly favors random stackings
of hexagonal planes. So why should the entropically unlikely fcc phase be the first one that is
formed? Jenkins et al. argued that if one thinks of particles as sticky, then the bcc phase is a
floppy manifold with a great many degrees of freedom. Most of these lead nearly nowhere because
particles collide, but some degrees of freedom—those that are a special combination of sliding
planes—can be extended much farther. Jenkins et al. likened this manifold to a bicycle wheel, with
a small fat hub near the bcc phase, and several long thin spokes leading out. To explain why the
system chooses the rare spokes that lead to an fcc phase, Jenkins et al. computed the hydrodynamic
mobility along a representative sample of spokes and showed that it was more than 50 times higher
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Figure 8
Kinetics in the sticky limit are strongly influenced by diffusion. (a) Diffusion coefficients measured for each possible transition path
between rigid clusters of 6 discs. Adapted from Reference 68 with permission. Copyrighted by the American Physical Society.
(b) Schematic of colloidal epitaxy, showing a colloid diffusing between sites on a lattice. The free energy barrier is strongly influenced
by the length of the path, which is longest at a step edge. Adapted from Reference 8 with permission from AAAS. (c) A body-centered
cubic crystallite of two kinds of particles [viewed along (010) axis], transforming along a diffusive pathway to a face-centered cubic
fragment. Adapted from Reference 73 with permission.

for those leading to the fcc phase than for those leading to random stackings. They argued that
although fcc is not the most thermodynamically stable, it is the most kinetically accessible, so it is
the one seen on the timescales of the experiment.

5. OUTLOOK

The sticky limit predicts states, free energies, and transition rates of clusters that agree with those
observed for colloidal clusters, and the hope is that it will give insight into a wider range of phe-
nomena, both in clusters and also in bulk systems like crystals made of DNA-coated particles. This
requires developing not only computational tools—to work with different particle shapes, sizes,
interaction structures, and larger or higher-dimensional systems—but also theoretical tools. New
approximations are required to describe a wider variety of dynamic phenomena, like nucleation,
assembly pathways, and out-of-equilibrium growth processes (e.g., 79). The sticky Fokker-Planck
equations are a starting point but are too high-dimensional to work with directly. The approxi-
mations are expected to be different from those used in traditional energy landscape theories and,
if they can maintain a separation between input parameters and geometry, may lead to efficient
methods to solve inverse problems such as designing a system that self-assembles both reliably
and efficiently.

Another issue is to extend the sticky limit and surrounding computational apparatus to singular
clusters, which are persistent features of the landscape for n ≥ 9 spheres. Only when these are
incorporated will it be possible to address the question of emergence and determine how close-
packings come to dominate the landscape for large n despite being disfavored by symmetry. Even
if singular clusters do not end up being the most thermodynamically stable states, they could
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play a role in kinetic effects like transitions or lead to interesting bifurcations as the geometrical
parameters in the system are changed.

Making testable predictions with this theory also requires incorporating the relevant physics.
Hydrodynamic interactions are critical in determining the kinetics but are difficult to measure
except on low-dimensional paths. Sticky tethers like DNA could also influence the kinetics, but
exactly how is not well understood (80–82) and nor is the impact of surface friction, such as that
created by particle roughness (83, 84). Discrepancies from the sticky-limit predictions can help
identify missing physics, but models are needed to make predictions for larger systems that can’t
be directly measured.

The set of rigid clusters by itself has already proven useful in studying phenomena like self-
assembly and self-replication. Because it is a nearly complete set of local minima on a particular
landscape, it is a toy model that realistically captures the geometrical frustration experienced by
physical and biological systems. It has been used to ask questions like: How does one make a
particular rigid cluster the most thermodynamically stable if all one can change are the interaction
strengths and specificities (13, 15, 85, 86)? How can one make a cluster that reproduces itself
(10)? It is natural to work in the sticky limit, because one is interested in comparing interaction
strengths and structures but not in the detailed shape of the energy landscape. The computational
apparatus surrounding the sticky limit is expected to provide a concrete tool to make forward or
inverse predictions incorporating specific experimental constraints.

The idea of particles bound by distance constraints that are possibly harmonic has been used to
study a number of other condensed matter systems such as jamming (29), structural glasses (30),
and silicates (31). These systems have singularities, like clusters, which have been evoked to explain
behavior near critical points (87–89). The properties of these systems as frameworks govern many
of their bulk behaviors, so a new thrust in materials science has been to solve the inverse problem,
that of designing a framework that responds in a desired way to stress. This might be possible by
engineering it to have soft modes with localized spatial deformations or other, possibly nonlinear,
properties (90, 91). So far the procedure has been to design modes by hand, such as by twisting
units in a kagome lattice (92). However, if the set of possible frameworks can be automatically
enumerated, as they can for clusters, this opens the door to a richer set of materials. New materials
or structures may also be assembled like origami, by patterning a two-dimensional surface so it
can bend and fold (32, 34, 93). Each facet of the surface is an object that is bound to the others by
distance and angle constraints, so its configuration space resembles that of clusters (33). As these
material systems become smaller, thermal effects will become important, and the tools developed
for clusters may be useful.

Of course, the sticky limit never holds exactly because a real potential has a finite range, and
this leads to discrepancies between predicted and measured free energies even for clusters as small
as n = 8. An exciting possibility is whether the sticky limit can be used as a starting point to
understand the landscapes of finite-range potentials. One can imagine starting with the sticky-
sphere landscape, slowly turning on a given potential, and relaxing the landscape in some manner.
The hope is that we can find all the pieces of the final landscape and do so more efficiently than
exploring it from scratch; indeed the landscape for a short-ranged potential is thought to be the
most rugged, with fewer local minima as the range increases (61, 94, 95). Such a continuation
would give insight into why a landscape has a particular shape and may also provide a bound on
the space of possible landscapes; for example, the space of energy-minimizing configurations of
points on the sphere sometimes has dimension much lower than the space of interaction potentials
whose minima are computed (96). These and the ideas above may make the sticky limit a powerful
starting point for understanding more general energy landscapes.
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Quantum-Matter Heterostructures
H. Boschker and J. Mannhart � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 145

Extreme Mechanics: Self-Folding Origami
Christian D. Santangelo � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 165

Phase Transitions and Scaling in Systems Far from Equilibrium
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