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1. Introduction

Strokes are the leading cause of disability in the United States. They affect almost 1 million
patients in the United States annually, leading to a total cost of about USD 240 Billion (Go
et al., 2014)(Ovbiagele et al., 2013). Almost two-thirds of stroke patients have significant
impairment in their upper limbs or extremities. This impairment leads to limitations in the
performance of activities of daily living (ADLs), like feeding, bathing, grooming, dressing,
etc. The impairment can be reduced and mitigated with the help of a clinical interven-
tion namely, rehabilitation training which typically involves the repeated practice of ADLs
composed of basic building blocks of motion, called functional primitives.

Just like we have phonemes for speech, these primitives can be considered to be phonemes
for activities. Primitives can be flexibly strung together to create an activity or an ADL.
There are five fundamental primitives which combine to form any activity: reach, idle,
stabilize, transport, and reposition. For example, when an individual reaches for a glass of
water, the hand that reaches out to grab the glass is performing a reach.

The rehabilitation training started in the early weeks after the stroke helps the patients
to recover quickly from the impairment. However, an unanswered question is how much
rehabilitation training should the patient perform? Currently, the dose of rehabilitation
training for humans depends on the intuition and experience of the administering therapist.
This makes the rehabilitation training more of an art than science. The rehabilitation train-
ing is not systematically quantified in humans because it is prohibitively time-consuming to
manually annotate and tally the number of functional primitives performed by the patient.

Some proxies can be used to quantify the rehabilitation training like time of the session or
using videos to track motion in order to count the movements automatically. Unfortunately,
time is not a good surrogate for the number of functional movements done by the patient in
a particular training session, as shown by Lang et al. (2007). Using videos to track motion
also has limited applicability since patients’ actions can be occluded in the videos, we might
need multiple viewpoints, or we may not be able to identify primitives due to noisy visual
backgrounds. In this work, we try to solve this problem by using sensors attached to the
patients’ body, which capture signals like accelerations, rotations, etc. and identify the
primitive movement done by the patient. We take the critical first step to automatically
identify functional primitives using the machine learning models. We feed the sensor data
which is captured using a measurement device called Inertial Measurement Units (IMUs) to
machine learning models and identify the primitive performed by the patient. This way, we
can quantify the rehabilitation training of a patient and help to maximize patients’ recovery.
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Figure 1: A sample IMU data, which is 200 time-step long (2 secs long).The plot shows several lines
where each line represents how the reading of a single sensor changes over time. Such a sample IMU
data which is in R76×200 acts as an input to a machine learning model that identifies the primitive
taking place in it.

We structure the work as follows: First, we look at how we identify the primitives.
Secondly, we compare various models used to identify primitives. And, finally, we analyze
the errors of various models and discuss future steps to correct these errors.

2. Model training and evaluation methodology

Data captured using the IMUs are high-dimensional time series data as there are 76 sensors
that capture 76 different physical quantities like accelerations, rotations, angular velocities,
and gyroscopic readings at each time step (each time step = 0.01 secs). A sample IMU data,
which is 200 time-step long (2 secs long), can be seen in figure 1. The figure shows several
lines where each line represents how the reading of a single sensor changes over time. Such
a sample IMU data, which is in R76×200, acts as an input to a machine learning model that
identifies the primitive taking place in it. The model outputs five scores corresponding to
five primitives, i.e., reach, transport, reposition, idle, and stabilize. The prediction of the
model is the primitive with the highest score. In this section, we first discuss the evaluation
metric and then discuss and compare different models for identifying primitives.

2.1. Evaluation metric

We first train a model on a train set which a subset of the our data kept separate to train
the models. The model is, then, evaluated it on a held-out set that is not seen by the model
during the training. In this way, we evaluate how the model performs on the unseen data.
In order to quantify the model’s performance, we would like to determine the accuracy of
the model for identifying the primitives. However, in our case, the dataset is relatively
imbalanced with the smallest primitive (repositions) constituting approximately 10% of the
data and the largest primitive (transports) constituting 26% of the data. Therefore, for such
an imbalanced dataset, the balanced accuracy metric (1) is appropriate to gauge the model’s
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performance as it gives equal importance to all primitives irrespective of their imbalance in
the dataset.

Bal. Acc =

∑5
i=1

TPi
Pi

5
(1)

Where, TPi = total number of true positives for the ith primitive, Pi = total number of
examples for the ith primitive. A prediction is a true positive when the prediction matches
the ground truth.

2.2. Models for predicting primitive

To learn a model that identifies the primitive is nothing but, given a set of training data,
to learn a function f that maps from R76×200 → R5. There are infinite fs that can map
from R76×200 → R5; some are flexible, whereas others are rigid, which depends on how
we parametrize the function. Flexible functions are those functions that allows a lot of
interaction between the different parts of the input. For example, a higher polynomial like
f = (ax1 + bx2)

100 has
(
100
2

)
interaction terms which enables the function to easily fit any

data in R2. Whereas, rigid functions are those functions that do not allow or barely allow
the different dimensions of the input to interact among themselves. For example, a linear
function like f = (ax1 + bx2) do not have any interaction term between variables x1 and x2.

To further understand the concept of flexible and rigid functions and how well they
generalize to unseen data, we take a simple case where our training data lies in R, and
we need to learn a function f : R → R that fits our data. The simple case is depicted in
figure 2. As seen in figure 2, a rigid function (model), which tends to be simple like a linear
function, underfits the training data. Whereas a flexible function (model), which tends to
be complex like a higher-order polynomial, overfits the training data. In both the cases, it
is easy to see that both the functions (models) will not perform well on the unseen data.
Instead, a balance should be maintained between the two extremes, and most of the machine
learning research focuses on how to strike this balance. The balance between underfitting
and overfitting scenario depends on how we parametrize the function (model).

If we parametrize the function in such a way that allows many interactions between
different parts of the input, then it becomes easy for the model to find spurious patterns
in the data and overfit to it. Whereas, if we restrict these interactions, we control the
complexity of the model and make it more simple. For example, in a linear function, for
a multi-dimensional input, there are no interactions between different dimensions of the
input. We, therefore, can control the complexity of function (model) by controlling the
interactions that the function allows within an input.

2.2.1. Traditional models prone to underfitting

The different models present in the literature are nothing but different ways of combing the
information present in the input. These models aim to reduce unwanted interactions and
promote useful interactions that would, eventually, help in performing the prediction task.
A class of models that are commonly used to perform the prediction task do not allow the
interactions to take place over the temporal dimension of the input. Remember, our input
has a temporal dimension (200-time steps) as well as sensor dimension (76 sensors).
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Figure 2: Left plot shows a rigid function (model) which tend to be simple like a linear function that
underfits the training data. Right plot shows a flexible function (model) which tends to be more
complex like a higher order polynomial that overfits the training data. In both the cases, it is easy
to see that both the functions (models) won’t perform well on the unseen data. Instead, a balance
should be maintained between the two extremes as shown in the center plot.

The traditional models, like random forest (Breiman, 2001) or a fully connected neural
network, do not allow the interactions to take place over the temporal dimension by ag-
gregating information across it but keeping the sensor dimensionality intact. The models
aggregate the information across the temporal dimension by computing statistics like mean,
standard deviation, maximum, minimum, or root mean square over the temporal dimension
(Kwapisz et al., 2011; Guerra et al., 2017). The model’s input dimensionality, therefore,
reduces from R76×200 to R76×5, where the fine-grained time information is lost.

This kind of dimensionality reduction controls unwanted interactions happening across
the temporal dimension. However, it also throws away a lot of essential information that
could be useful to perform the prediction task. This results in a scenario where the model
tends to underfit because a lot of useful interactions were restricted. Results in table
1 demonstrates that the traditional models underfit the data and, hence, have a lower
performance on the unseen data as compared to other models that we will discuss in the
next section.

2.2.2. Deep learning models easily overfit

Deep learning models are the most complex class of functions that can learn any pattern
present in the data, even spurious patterns. They, therefore, are prone to overfit to the data
they are trained on. To control this overfitting, as discussed in section 2.2, the deep learning
models should restrict the unwanted interactions within the input. They achieve this by only
allowing some parts of the input to interact with each other. In deep learning terminology,
this is called imposing a structure or an architecture. Different architectures are found to be
suitable for different types of data. For example, a convolutional architecture (also known
as convolutional neural network or CNN) is good for learning patterns from image data and
temporal data. Whereas, a recurrent architecture (also known as recurrent neural network
or RNN) is good at finding patterns in the temporal data. In this study, we select the best
performing CNN and the best performing RNN (namely Long Short Term Memory network
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Models Traditional models Deep learning models

Model
type

Random
forest

Fully
connected

neural
network

CNN LSTM
Proposed

CNN model

Balanced
accuracy

52.66 58.04 64.01 66.58 69.21

Table 1: Balanced accuracies for different models described in Section 2.2.1 and 2.2.2. Although
LSTM outperforms baseline CNN model, our proposed convolutional network outperforms all the
models by atleast 3-5%

or LSTM) from the literature and use it to identify primitives(Hochreiter and Schmidhuber,
1997; Wang et al., 2017). The results in table 1 show that CNN and LSTM perform better
than the traditional models which suffer from the problem of underfitting.

Although these architectures tend to impose a structure and allow useful interactions
within the input data, they still are suboptimal because the imposed structures have not
taken into account the actual prediction task or the domain from where the data is being
extracted. Therefore, the architectures need to be finetuned for our prediction task. This
finetuning of the architecture requires some domain knowledge from where the data is being
extracted. For example, in our case, each of the 76 sensor readings represents different phys-
ical quantities like accelerations, angular velocity, rotations, etc. A naive implementation of
the best CNN, as per the literature, will allow these different physical quantities to interact
freely which seems to be imprudent for our purpose as they have different measuring units.
A simple change in the CNN, which restricts these interactions until the different physical
quantities are mapped to a shared space, results in more meaningful interactions. As seen
from the results in table 1, this simple change boosts the model’s performance by 4-5% over
the best CNN implemented without taking the domain knowledge into consideration.

3. Analysis of errors of the models and their limitation

To analyze the errors of the model, we plot the confusion matrix, a square matrix that
shows the true labels along the rows, and the predicted labels along the columns. Each row
of the matrix adds up to one, and ideally, a perfect model will have ones along the diagonal
of the matrix. We plotted the confusion matrices for the best traditional model, best RNN,
and our proposed CNN. All the confusion matrices demonstrated a common trend, i.e., the
reaches were confused with transports, and the idles with stabilizes. In other words, all the
models faced difficulty in distinguishing reaches from transports and idles from stabilizes.
This trend is explained by the close resemblance of both pairs of confused primitives. They
only differ by a small detail, i.e., one includes grasping the object while the other does not
include grasping. However, unfortunately, the grasping information is not captured during
our rehabilitation study. The models, therefore, find it difficult to differentiate between
those primitives. As part of future work, we aim to extract the grasping information from
the videos of the rehabilitation training and improve classification performance.
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Figure 3: Confusion matrices for (a) best traditional model, (b) best recurrent neural network, (c)
proposed convolutional model. From the confusion matrices, it could be seen that idle is confused
with stabilize and reach is confused with transport.

4. Conclusion

In this study, we showed that deep learning models, along with IMU sensors, could be
effectively used to identify functional primitives. Such models are useful to quantify re-
habilitation training in stroke patients. Additionally, we show that a simple finetuning of
the existing convolutional architecture with the help of domain knowledge can significantly
boost the performance of the model as compared to implementing it without using the do-
main knowledge. Finally, we also discussed the limitations of the model of not being able
to distinguish reaches from transports and idles from stabilizes. To rectify the errors, as a
future step, we aim to provide the model with additional grasping information extracted
from the videos.
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