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1. Introduction

Harnessing fusion energy, in which hydrogen atoms fuse in hot plasma to release energy, is a crucial
step in improving global energy infrastructure. Not only is fusion energy extraordinarily clean, but it
is far more sustainable and energetic than traditional energy sources. As a comparison, one metric ton
of fusion energy material would provide a million times more energy than one metric ton of oil. Yet to
reap these benefits, physicists and engineers must first design reactors to hold, or confine, the fusion
plasma efficiently enough so that energy is not lost as the reaction occurs.

One popular design for fusion reactors is the tokamak, which uses powerful magnetic fields to spin
the plasma around in a toroidal, donut-like shape (Fig.1). The fusion reaction inside the spinning
plasma emits byproducts called alpha particles in all directions. These alpha particles have wildly
different trajectories depending on the direction they are emitted. As a result, some alpha particles
may escape the plasma which can lead to significant energy losses. These energy losses are exactly
what we want to reduce in order to develop efficient fusion reactors. However, there is an inherent
uncertainty here in even quantifying energy loss, since each alpha particle gets emitted in a random
direction. Factoring in this uncertainty in emission direction is critical for assessing energy loss and
thereby informing reactor design. When tokamak operators turn their reactor on, will they keep enough
energy to successfully attain fusion?

We assess energy loss in tokamaks using the tools of uncertainty quantification (UQ), where we
model the uncertainty in the emission direction of alpha particles by a probability distribution and we
analyze the resulting statistics of their trajectories. To study these statistics, we typically need many
trajectories using different samples of emission direction. However, numerical simulation of even a
single trajectory is expensive since the dynamics for alpha particles have two distinct time scales. As a
result, a prohibitively small time step is needed to resolve a fast time scale motion. Since numerically
simulating individual trajectories is expensive, simulating many trajectories using different emission
direction samples becomes rapidly intractable.

Our goal is to develop methods to limit the overall number of expensive particle trajectories that
we need to simulate. Specifically, in section 3 we discuss how a multifidelity approach can reduce the
number of expensive trajectories required by utilizing other cheaper models which are well correlated
to the alpha particle dynamics.

2. Equations of motion and a naive method for estimating statistics

First we provide some details on our mathematical model for the dynamics of alpha particles. Specifi-
cally, we highlight some features of the model which make estimating statistics particularly challenging.
Then we illustrate how these challenges manifest by applying a natural approach estimating statistics
of our alpha particle model.
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Figure 1: Left: Schematic of a tokamak reactor device. Various coils induce a toroidal magnetic field which
spins the fusion plasma around the device. Inside of this plasma, reactions occur which emit the alpha particles
as byproducts. Right: Zoomed in view of alpha particle trajectories inside of tokamaks. Their trajectories
consist of a rapid oscillation around the slower moving center which we want to track (indicated by the pink
dots).

2.1. Equations of motion for alpha particles in tokamaks

We consider the dynamics of an emitted alpha particle in the magnetic field of the tokamak reactor,
where we neglect the electric and magnetic fields generated by the fusion plasma itself. The equations
of motion are then give by the Lorentz force

mẍ(t) = (+2e) · v(t)×B, (1)

where x(t) ∈ R3 is the position vector of the alpha particle, v(t) = ẋ(t) is its velocity, and m is its
mass. The reactor’s magnetic field B is a vector field which depends on position, but not time. Alpha
particles emitted in the tokamak follow the equations of motion (1) which cause the particles to orbit
the tokamak device both toroidally (long way around the donut) and poloidally (short way around
the donut through the hole). These dynamics are inherently multiscale in time, with a small, rapid
gyration whose period is the fastest time scale in the system. However, the alpha particle tends to drift
on a much slower time scale, and it is the position of the particle on the slow time scale that we are
interested in, see Fig. 1.

For any initial position x(0) and initial velocity v(0) we can solve (1) to any time by solving (1).
However, due to the uncertainty in the emission direction, there is uncertainty in v(0). We model
this uncertainty by setting v(0) to be distributed uniform in all directions. The magnitude ||v(0)||2 is
determined by the energy released in the fusion reaction and is a fixed constant.

To emphasize the special role that direction plays over magnitude, we define the emission direction
by the initial velocity normalized by its magnitude: ω = v(0)/||v(0)||2. So ω is a random variable
distributed uniformly on the unit sphere in R3. Thus, for an initial position x(0) and random emission
direction ω, we let x(t;ω) denote the solution to (1) at time t with emission direction ω.

While x(t;ω) is the alpha particle’s location at time t based on uncertainty in emission direction,
we want to measure how close the particle is to escaping the plasma since this is what leads to energy
losses. To do this we use a certain flux function Ψ which maps positions inside the tokamak to R,
where the sublevel set {x : Ψ(x) ≤ 0} represents the plasma, and the level set {x : Ψ(x) = 0} is
outermost edge of the plasma. Thus we are interested in tracking the variable

Qt(ω) := Ψ(x(t;ω)), (2)

and we say that the alpha particle with emission direction ω escapes if Qt(ω) ≥ 0 for any t.
Since we are interested in slow time scale statistics, we let t1 < t2 < · · · < tNMAX denote the time

points of interest, assuming tj+1−tj is much larger than the period of rapid gyration for all j. Between

2



tj and tj+1 the particle has done many small, rapid oscillations, but has moved little in its orbit around
the reactor. For shorthand, we denote Q(n) = Qtn , so

Q(ω) =
(
Q(1)(ω), Q(2)(ω), . . . , Q(NMAX)(ω)

)
∈ RNMAX . (3)

is our statistical quantity of interest arising from the uncertain emission direction ω. We will refer to
the model (3) as the full-orbit model.

In order to a generate a single sample of our full-orbit model Q(ω), we start by sampling an
emission direction ω. Then we solve (1) using ω to times t1, t2, . . . , tNMAX . This is done by an
expensive numerical integration where we must use a time step smaller than the fastest time scale, the
period of rapid oscillation. Then we evaluate Ψ at x(ti;ω) for i = 1, . . . , NMAX which gives Q(ω).

2.2. A first attempt for estimating statistics: Monte Carlo

Now that our mathematical model for the alpha particle dynamics is set up, we want to estimate
statistics of Q(ω), namely the mean and variance. This would enable tokamak operators to estimate
what proportion of alpha particles might escape the plasma. For simplicity, here we only focus on
estimating the mean EQ(k)(ω) at the times tk for k = 1, . . . , NMAX.

A natural approach to estimate EQ(ω) would be to just generate a very large number of i.i.d.
samples of Q(ω) and then take their average. This is called the Monte Carlo (MC) method and the
exact procedure is as follows:

Monte Carlo (MC)

1. Draw N i.i.d. samples ω1,ω2, . . . ,ωN .

2. For each i = 1, . . . , N , generate Q(ωi) using expensive numerical integration to solve (1).

3. For k = 1, . . . , NMAX, estimate EQ(k)(ω), i.e. the mean at time point tk by

Q̂
(k)
MC,N :=

1

N

N∑
i=1

Q(k)(ωi). (4)

For notation, we always use a hat as in Q̂(k)
MC,N to denote an estimator of EQ(k)(ω). For each time

tk, this is an unbiased estimator for EQ(k)(ω) with variance Var(Q(k)(ω))/N . Based on empirical
measurements, Var(Q(k)(ω)) is large for all times tk, which means a massive N will be necessary for
an accurate estimator.

Moreover, since each Q(ωi) is expensive to simulate due to the multiscale nature of the dynamics,
using a large number of trajectoriesN is intractable. Note that the variance of the MC estimator decays
like 1/N . Since accuracy of estimators scales like the square root of variance, a ten-fold increase in
accuracy requires a hundred-fold increase in N . In concrete terms, this means one more digit of
accuracy requires 100 times more samples. Two more digits of accuracy requires 10,000 times more
samples. Since our full-orbit modelQ(ω) is already expensive to simulate, using more and more samples
is out of the question. So we instead look for variance reduction techniques to shrink Var(Q(k)), which
would allow for the same accuracy to be achieved for less computational cost.

3. Using multiple models simultaneously

First we use a simple example to motivate how introducing other random variables can yield variance
reduction. We then extend this idea by introducing other models alongside the full-orbit model for
variance reduction.
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3.1. Adding correlated random variables for variance reduction

As a quick diversion, let X be any random variable and suppose we want to estimate EX. Suppose
that we already have some unbiased estimator X̂.

Now let ρ(·, ·) denote the correlation coefficient between two random variables, and suppose we
have another variable Y which is well correlated with X, e.g. ρ(X,Y ) = 0.995. Additionally, suppose
we know EY exactly and that we have an unbiased estimator Ŷ for EY . Then

X̂∗ := X̂ + c
[
EY − Ŷ

]
(5)

is also an unbiased estimator for EX for any coefficient c. Moreover if the coefficient c is correctly cho-
sen, it can lead to a large variance reduction: Var

(
X̂∗

)
=
(
1− ρ(X,Y )2

)
Var

(
X̂
)
≈ Var

(
X̂
)
/100.

Hence, the more correlated Y is with X, the larger variance reduction we achieve. In this ideal case,
the optimal c can be found analytically by minimizing the variance of (5) with respect to c.

3.2. Combining the full-orbit model with other low-fidelity models

Motivated by the simple example in section 3.1, we now seek to provide a similar variance reduction
for the full-orbit model through the use of multifidelity methods. These methods speed up estimating
statistics of high-fidelity models (expensive, very accurate, physics-based, X in section 3.1) by using
low-fidelity models (cheap, inaccurate, any source, Y in section 3.1). As in section 3.1, the hope is that
the low-fidelity model is correlated enough to the high-fidelity model to provide variance reduction.
An example of a high-fidelity, low-fidelity combination common in elliptic PDE is a fine and coarse
mesh discretization of the same elliptic operator.

For us, the high-fidelity model is our expensive full-orbit model to track alpha particles, but there
are many possible low-fidelity models that can be used. We consider two low-fidelity models:

• An existing physics-based drift-orbit model which essentially takes the equations of motion (1)
and averages out the fast gyration. This yields an ODE in 4 variables which no longer has fast
time-scale phenomenon to resolve, and hence numerical integration is cheap.

• Piecewise linear interpolation. Since ω lies on the unit sphere in R3, we can use polar and
azimuthal angles to parametrize the unit sphere. With this, Qt(ω) can be viewed as a mapping
from [−π/2,−π/2]× [−π, π]× [0, tNMAX ]→ R. Thus we can use full-orbit model simulations on
a mesh in [−π/2,−π/2]× [−π, π] to fit a piecewise linear interpolant.

Let q(ω) ∈ RNMAX denote a low-fidelity model at the same time points as the full-orbit model.
Without loss of generality, assume any notation involving the full-orbit model Q(ω) also now holds for
the low-fidelity model q(ω) but with the models changed. Then using our full-orbit model Q(ω) and
a low-fidelity model q(ω), the multifidelity estimator (MF) is given by:

Multifidelity estimator (MF)

1. Draw N i.i.d. samples ω1, . . . ,ωN . Then drawM−N more i.i.d. samples ωN+1, . . . ,ωM .

2. For each i = 1, . . . , N , generate Q(ωi) using expensive numerical integration to solve (1).
For each j = 1, . . . ,M , generate low-fidelity model evaluations q(ωj).

3. For k = 1, . . . , NMAX, estimate EQ(k)(ω), i.e. the mean at time point tk by

Q̂
(k)
MF,N := Q̂

(k)
MC,N + c(k)

[
q̂
(k)
MC,M − q̂

(k)
MC,N

]
. (6)

where c(k) are constant coefficients.
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Figure 2: Left: Correlation of low-fidelity models to full-orbit model. Drift-orbit does the worst, and the piece-
wise linear interpolant improves for finer meshes. Right: Variances for MF using piecewise linear interpolant
as the low-fidelity. In all cases, MF beats MC for the computational time. In both plots, lower is better.

Existing results in the literature [2] give us an optimal choice of c(k) andM for a fixed computational
time. Let w be the ratio of the cost for a single high-fidelity trajectory Q(ω) to the cost for a single
low-fidelity trajectory q(ω). Then using the optimal c(k) and M , the accuracy of MF is

Var(Q̂
(k)
MF,N ) = A(k) Var(Q̂

(k)
MC,N ). (7)

where A(k) is a term which goes to 0 rapidly as the correlation between the full-orbit and low-fidelity
model goes to 1, and depends inversely on w. Hence, a good low-fidelity model q((ω) should be both
cheap and well correlated to the full-orbit model to achieve a large variance reduction.

In Fig. 2, we see that the drift-orbit model has relatively poor correlation to the high-fidelity
model. The piecewise linear interpolants were built on L × L meshes with L = 50, 100, 200, 400 and
NMAX = 92. In all cases they had stronger correlation to the full-orbit model than the drift orbit.
Drift-orbit also lost in in speed, with w around 350, but the interpolants had w near 400,000. We
see that MF using any of the piecewise linear interpolants provides smaller variance for the same
computational time compared to MC. All interpolation meshes get 10 times variance reduction at
some time points, with the finest mesh achieving almost 100 times reduction at certain time points.

4. Conclusions

We used multifidelity methods to estimate statistics of alpha particles emitted in tokamak reactors,
and with low-fidelity interpolation models we were able to provide a noticeable improvement over
the Monte Carlo approach. Such multifidelity methods serve as a tool for tokamak researchers to
efficiently assess energy losses due to escaping alpha particles. And in doing so, these methods can
help inform tokamak design in order to minimize energy losses which would be a major step towards
clean, sustainable fusion energy.

Future work includes using correlation between time points of interest tk and tk+1 to improve
estimation. Some work in this exists in the optimization literature under the name information reuse.
Another direction is training machine learning models such neural nets to learn correlation to high-
fidelity models, specifically to be then used in a multifidelity estimator.
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