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Introduction

Glaciers and icebergs exhibit fascinating morphol-
ogy, including structures such as caverns, spikes,
and wave-like patterns known as scallops (Figure 1).
These features are a signature of the coupling be-
tween flow and shape: as ice melts into water, it pro-
duces and modifies flows, which non-uniformly melt
the ice surface. The surface recedes, and the process
repeats. This feedback mechanism is not limited to
ice alone. In fact, melting belongs to a much broader
class of problems known as moving boundary prob-
lems, which encompass a variety of geophysical pro-
cesses such as dissolution, erosion, solidification, and
ablation [1] [2].
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Figure 1: Overturned icebergs reveal complex
morphology including scalloping (a),(d) and spikes
(b),(c).

A unique property of melting ice that separates it
from other moving boundary problems is that water
is densest a few degrees above its freezing point, a
familiar consequence of which is that ice floats. This
property, commonly referred to as the density in-
version, generates exotic flow patterns distinct from
those arising in classical convection [3] [4].

In this report, we examine how the density inver-
sion influences the shape of melting ice. We consider
the effects of natural convection alone, that is, flow
driven solely by density variations. Our approach in-

volves experimental, numerical, and theoretical tech-
niques that work together to form a broader picture
of the complex shape dynamics.

We first theoretically formulate the melting prob-
lem and its moving boundary conditions, and then
describe our experimental, numerical, and analytical
approaches. We conclude with an outlook on further
applications and discuss the significance of moving
boundary problems in the context of climate change.

Equations of motion

Moving boundary problems are typically formu-
lated as partial differential equations (PDEs) in a
domain whose boundary is an unspecified function
of time, meaning the boundary itself is part of the
solution. To fully describe the solution, we then need
both boundary conditions for the PDE as well as an
evolution equation for the moving interface.

As a starting point, a simple model for the density
of water as a function of temperature T is

ρ(T ) = ρ∗(1− β(T − T∗)2), (1)

where T∗ ≈ 4◦C is the temperature of maximum den-
sity ρ∗, and β is a thermal expansion coefficient [5].
The full equations of motion with variable density
are both numerically and analytically challenging, so
to simplify matters we make the Boussinesq approx-
imation, which neglects all density variations except
those that multiply gravity. Using this approximation
and a standard non-dimensionalization procedure, we
arrive at the dimensionless Boussinesq equations,

∂u

∂t
+ u · ∇u = Pr(−∇p+ ∆u + Raθ2ẑ), (2a)

∇ · u = 0, (2b)

∂θ

∂t
+ u · ∇θ = ∆θ. (2c)

Here u(x, t) is the fluid velocity, p(x, t) is the pres-
sure, and θ(x, t) = (T (x, t) − T∗)/(T∞ − T0) is the
deviation from the temperature of maximum density,
normalized by the difference in the far-field tempera-
ture T∞ and the melting temperature T0 = 0◦C. The
first two equations, (2a) and (2b), are the famous
Navier-Stokes equations, which describe the incom-
pressible velocity field within the fluid, while the last
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equation (2c) describes the evolution of the temper-
ature field.

The Boussinesq equations depend on two di-
mensionless parameters called the Rayleigh number
Ra = gβ(T∞ − T0)2L3/νK and the Prandtl number
Pr = ν/K, where g is acceleration due to gravity, L is
the length scale, ν is the viscosity, and K is the ther-
mal diffusivity. The Rayleigh number, which is pro-
portional to L3, characterizes how turbulent the flow
is, while the Prandtl number describes the separation
of time scales between the temperature and velocity
fields. For water, the Prandtl number is roughly con-
stant with Pr = 12, while the Rayleigh number ranges
from 106 on laboratory scales to 1012 on geophysical
scales.

In this system the temperature and velocity fields
are coupled through the last term in Equation (2a),
Raθ2ẑ, which describes the buoyancy force. Here
larger values of Raθ2 indicate lighter fluid, while
smaller values indicate denser fluid. Though this
term is always positive, it can be shown that the pres-
sure comes into hydrostatic balance with the far-field
temperature, meaning that only the relative force
Ra(θ2 − θ2∞) acts on the fluid.

The Stefan condition

Classically, melting boundaries are described by
the Stefan condition, which says the melt rate is pro-
portional to the temperature gradient along the sur-
face,

ṽn = St
∂θ

∂n
.

Here ṽn is the (dimensionless) normal velocity of the
interface and St = cp(T∞−T0)/L is the Stefan num-
ber, where cp is the heat capacity and L is the latent
heat of fusion. The Stefan number can roughly be
characterized as the energy required to melt a unit
mass of ice. In addition to the Stefan condition, ice is
governed by the Gibbs-Thomson effect, which causes
regions of high curvature to melt faster. To leading
order, this can be incorporated into the boundary
condition by modifying the normal velocity as

vn = ṽn(1 + γκ), (3)

where κ is the surface curvature and γ is a material
constant. With the Boussinesq equations (2a)–(2c)
and the Stefan condition (3), we have a complete an-
alytic description of the moving boundary problem.

Experiments and Simulation

Our study of melting ice is driven by table-top ex-
periments and numerical simulation which motivate

(a)

1 cm

(b)

Figure 2: Close-up images of ice during experiments
at (a) T∞ = 4◦C and (b) T∞ = 6◦C. For T∞ = 4◦C
we find the ice sharpens from below, while at T∞ =
6◦C it develops scallops.

mathematical models. Experiments strip away math-
ematical complications, providing a direct avenue to
the full moving boundary problem, while simulations
allow us to perform systematic parameter studies. In
this section, we review our experimental and numer-
ical frameworks and provide an overview of some re-
sults. Throughout our study, we are primarily in-
terested in characterizing the effects of the far-field
temperature T∞, which determines the level of influ-
ence the density inversion has on the flow.

Table-top geophysics

As a laboratory model of an iceberg, we consider a
cylinder of ice, approximately 20cm tall, submerged
in a tank of water maintained at temperature T∞. To
control T∞, we work in a cold room, typically used for
biological research, which has operating temperatures
in the range 0− 10◦C.

Our experiments reveal three primary classes of dy-
namics. At higher temperatures, T∞ > 8◦C, we find
the ice sharpens from the top, analogous to what has
recently been discovered during dissolution [2]. To
understand this analogy, note that in this regime the
dimensionless ice temperature θ0 = (T0 − T∗)/(T∞ −
T0) approaches zero and the dimensionless far-field
temperature θ∞ = (T∞ − T∗)/(T∞ − T0) approaches
one. In terms of the buoyancy force Raθ2, this means
cold fluid near the ice surface is less buoyant, or heav-
ier, than warm fluid away from the surface, just as
saturated water near a dissolving body is heavier than
fresh water away from it. In both these cases, the dif-
ference in buoyancy forces at the surface and the far-

2



(a) (b)

Figure 3: Temperature fields from a 2D phase-field
simulation with (a) T∞ = 4◦C and (b) T∞ = 6◦C.
The yellow region denotes the ice where T = 0◦C, and
the red curve denotes the phase boundary φ = 1/2.

field causes the fluid near the surface to sink, which
sharpens the body from the top.

At low temperatures, T0 < T∞ < T∗, we discover
the ice also sharpens, but this time from the bot-
tom (Figure 2a). The mechanism here is similar to
the previous case. In this temperature range, the di-
mensionless melting temperature θ0 is now larger in
magnitude than the dimensionless far-field tempera-
ture θ∞, meaning the buoyancy force Raθ2 is stronger
near the surface than in the far-field. This causes
lighter fluid near the surface to rise, opposite to be-
fore, which sharpens the ice from the bottom. This
inverse sharpening is a typical characteristic of ice-
bergs, both in the form of large pinnacles (Figure
1b), as well as smaller ridges (Figure 1c).

In between these regimes, when T∗ < T∞ < 8◦C,
something very different occurs. Instead of strictly
upward or downward flow, we find the flow near the
ice consists of adjacent regions of rising and sinking
fluid. This shear flow drives an instability, which
carves wave-like patterns into the ice surface (Fig-
ure 2b), similar to scallops found on icebergs. Such
patterns are known to form under imposed flow, but
our experiments demonstrate they can be created by
buoyancy forces alone.

In this intermediate range, fine-tuning the far-field
temperature T∞ can be challenging, so to gain further
insight we turn to numerical simulation.

Numerical methods

Numerical methods for moving boundary problems
are generally classified as interface-tracking or fixed-
grid methods. In interface-tracking methods, the
melting body is explicitly parametrized and then re-
lated to the fluid, typically by deforming the compu-
tational grid [6] or using an immersed boundary type
method [7]. These methods can resolve fine-scale fea-
tures on the interface, but are often computationally

intensive. Fixed grid methods, on the other hand,
use a thermodynamic model for phase change, which
typically appears as a source term in the temperature
equation. The PDEs can then be solved on a stan-
dard Cartesian grid, making it easy to incorporate
melting dynamics into existing fluid solvers.

One of the most popular fixed-grid methods is the
phase-field method [8] [9], which we use in this study.
Starting from the Stefan condition (3), one can de-
rive a nonlinear diffusion equation for a phase pa-
rameter φ, which couples to the velocity and temper-
ature equations (2a) and (2c). In this framework, φ
ranges smoothly between the solid (φ = 0) and liquid
(φ = 1) phases, leading to higher regularity in the so-
lution and therefore better overall accuracy compared
to other fixed grid methods.

Snapshots of the temperature field from our phase-
field simulations at T∞ = 4◦C and T∞ = 6◦C are
shown in Figure 3. The ice is represented by the
solid yellow region, outlined by the phase boundary
φ = 1/2 in red. At T∞ = 4◦C, the ice sharpens from
the bottom, while at T∞ = 6◦C it forms scallops on
the surface. This behavior is in agreement with the
experimental results from Figure 2, with similar tip
curvatures and scallop wavelengths.

To summarize, our experiments and simulations re-
veal three distinct shape regimes: sharpening from
below (T0 < T∞ < T∗), sharpening from above
(T∞ > 8◦C), and scalloping (T∗ < T∞ < 8◦). These
observations suggest several modeling approaches,
which we describe in the next section.

Modeling

In this section we propose two analytical models
to quantify our experimental and numerical observa-
tions. The first model, based on boundary layer the-
ory, characterizes the sharpening behavior, while the
second, based on linear stability analysis, describes
the scalloping patterns.

Boundary layer theory

Boundary layer theory is a useful tool for analyzing
moving boundary problems coupled to flows [10] [11].
First, we assume the flow is two-dimensional and in-
troduce a body fitting coordinate system (x, y), where
x = 0 corresponds to the tip of the ice. In this coor-
dinate system, the ice surface can be parametrized by
the angle α(x) made between the tangent line to the
surface and the horizontal axis. Next, assuming the
flow is steady, unidirectional, and localized near the
ice surface, it can be shown that the Boussinesq equa-
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tions (2a)–(2c) asymptotically reduce to the boundary
layer equations,

uux + vuy = Pr
[
uyy + Ra(θ2 − θ2∞) sinα(x)

]
,

uθx + vθy = θyy,

ux + vy = 0.

(4)

In this formulation u and v are the fluid velocity tan-
gent and normal to the surface, respectively, and θ is
the temperature, non-dimensionalized as before.

Introducing a similarity variable η(x, y), which de-
pends on the Rayleigh number, the Prandtl num-
ber, and the tangent angle α(x), the boundary layer
equations (4) can be transformed into two cou-
pled ordinary differential equations (ODEs) for a
similarity-stream function f(η) and similarity tem-
perature h(η),

f ′′′ + 3ff ′′ − 2f ′2 + (h2 − θ2∞) = 0,

h′′ + 3Prfh′ = 0.

From these ODEs, the normal velocity of the ice-
water interface can be computed explicitly by eval-
uating ∂θ/∂y = h′(η)∂η/∂y at the surface y = 0 and
using the Stefan condition (3),

vn(x) = St
(3Ra

4Pr

)1/4 h′(0) sin1/3 α(x)( ∫ x
0

sin1/3 α(x′)dx′
)1/4 .

Taylor expanding this expression near the tip x = 0
and using a curve-shortening equation for the tangent
angle α(x), we can derive a power law for the tip
curvature,

κ(t) = κ0

(
1− t

ts

)−4/5
.

Notably, the negative exponent −4/5 on the right
hand side of this equation indicates a finite-time sin-
gularity at ts, which is a signature of the sharpening
seen in the two regimes T0 < T∞ < T∗ and T∞ > 8◦C.
In reality, such singularities do not exist, and the
Gibbs-Thomson effect limits their growth.

In the scalloping regime T∗ < T∞ < 8◦C, it seems
the boundary layer solution is no longer valid, so a
different approach is necessary.

Linear stability analysis

Wave formation is generally an indicator of linear
instability. To analyze these instabilities, we typi-
cally look for a steady state solution and consider
small perturbations about that state. As a basic
model for flow near the ice surface, we consider a

Figure 4: Steady state velocity profiles from lin-
ear stability analysis. For 5◦C < T∞ < 6.5◦C the
steady state exhibits both upward and downward flow
in agreement with observations.

fluid, governed by the Boussinesq equations (2a) –
(2c), confined between two vertical walls. We as-
sume one wall is kept at the ice temperature θ0 and
the other at the far-field temperature θ∞. Assuming
the vertical derivatives are small, there is a simple
steady-state in this geometry, which we denote by
u(0) = (0, v(0)) and θ(0). The vertical velocity profile
v(0) is shown in Figure 4, demonstrating the bidi-
rectional flow observed in experiments and simula-
tions. Introducing the stream function ψ such that
u = (ψz,−ψx) and perturbing the Boussinesq equa-

tions about the steady state ψ = ψ(0) + εψ̂eikz+σt

and θ = θ(0) + εθ̂eikz+σt, we get a generalized eigen-
value problem for the perturbation profiles ψ̂ and θ̂,
and their growth rate σ,

σ(D2 − k2)ψ̂ − ikv(0)xx ψ̂ + ikv(0)(D2 − k2)ψ̂

= Pr
[
(D2 − k2)2ψ̂ − 2RaD(θ(0)θ̂)

]
,

σθ̂ + ikθ(0)x ψ̂ + ikv(0)θ̂ = (D2 − k2)θ̂,
(5)

where D = d/dx. This eigenvalue problem, called the
Orr-Sommerfeld equation, can provide insight into
the wavelength of instability, its growth rate, and the
way such properties vary with the far-field tempera-
ture. In particular, for all wavenumbers k that have
an eigenvalue σ∗ with positive real part, the pertur-
bations will grow and the steady state u(0) and θ(0)

becomes unstable.
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Figure 5: Region of unstable wavelengths k versus
the Rayleigh number for T∞ = 6◦C. The shading
indicates the growth rate of instability Re(σ∗).

To solve the Orr-Sommerfeld equation (5), we ex-

pand the perturbation profiles ψ̂ and θ̂ in a finite
series of orthogonal basis functions, such as Cheby-
shev polynomials, and solve the corresponding eigen-
value problem for the system of coefficients. Figure
5 shows the computed region of unstable wavenum-
bers k versus the Rayleigh number for T∞ = 6◦C.
For the experimental conditions where we estimate
Ra ≈ 2 × 107, this analysis predicts a scallop wave-
length in the range 2–5cm, in rough agreement with
the scallop from the experiment shown in Figure 2b.

Outlook

The class of moving boundary problems is im-
mense, and accelerating climate change is making
them more relevant every day. The oceans are warm-
ing and polar ice is melting faster; the sea level is
rising and coastal regions are eroding. Melting ice
is just one part of this global process, and we hope
to expand the tools we developed here to further un-
derstand other moving boundary problems related to
climate change.

Throughout this study we assumed the ice was held
fixed at the surface. In reality, as icebergs melt and
change shape they can become gravitationally unsta-
ble and capsize. Polar scientists have noticed this is
happening more often, and attribute the higher fre-
quency to warmer waters. By generalizing our model
to let the ice float freely, we can analyze the coupling
between temperature, shape, and stability, as well as
its impact on overall melt rates.
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