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1 INTRODUCTION

Our measurement devices are often imperfect. The microphone of our cell phone picks up background
sounds and the images captured from our camera are corrupted by random voltage fluctuations in
the light sensors. As in these examples, addition of noise is a common form of corruption that
occurs in our measurement devices. Reducing the noise and recovering the signal of interest from
corrupted measurements is called denoising. To denoise effectively, one has to tell apart signal from
the noise. This means that the denoiser should have a good understanding of what the signal should
look like. Particularly, for our example with the camera, the denoiser should be able to describe what
the image of naturally occurring objects (like people, trees, animals, buildings etc), called natural
images, look like. Images of nanoparticles taken with an electron microscope or images acquired
from an MRI machine are not classified as natural images - they have very different statistics. We
will focus on denoising natural images in this work (Refer to fig 1 for a visual example). Natural
images are difficult to describe mathematically or algorithmically. This makes denoising problem a
test on how well we understand natural images, in addition to being an important application in our
image acquisition systems.

Methods to work with natural images are an active area of research and in the past decade, a
specific machine learning technique called convolutional neural networks (CNN) (LeCun et al.,
2015), introduced in section 3, has emerged as the defacto standard to deal with image data. CNN
based denoisers implement a denoising strategy that is completely data driven. The denoiser is
shown thousands of pairs of noisy and clean images which it uses to learn a strategy to denoise a
new noisy image. This is in stark contrast to traditional methods where denoising algorithms are
explicitly designed using known properties of natural images. However, CNN based denosiers have
outperformed traditional signal processing denoising algorithms by large margins (Zhang et al., 2017;
Chen & Pock, 2017). This superior performance achieved CNNs comes at a cost of interpretability
- we don’t understand how CNNs denoise images. On a high level, the goal of this work is to
advance our understanding of how CNNs denoise natural images and gain intuition and a formal
understanding of the denoising mechanism they implement. This understanding can help us better
realize the potential and limitations of the current CNN based denoisers.

In the rest of the manuscript, we will develop a detailed understanding of CNN based image denoisers.
Section 2 formalizes the denoising problem and introduces some traditional signal processing based
denoisers. Section 3 reviews CNNs and CNN based denoisers. Section 4 introduces my previous
results from Mohan et al. (2019) showing that CNNs denoise by projecting to an low-dimensional
space. Section 5 discusses my current research on how CNNs find this low-dimensional space.

2 DENOISING PROBLEM AND CLASSICAL SOLUTIONS

An m× n image or a natural image with N = mn pixels is equivalent to flattened vector with N
entries. That is, our signal x is in RN . The measurement y that we observe is our signal x corrupted
with an additive Gaussian noise η ∈ RN :

y = x+ η, where η ∼ N (0, σ2IN ), (1)
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Figure 1: Visual example of denosing problem. The goal of denoising problem is to estimate the
clean image from observed noisy image. In this example, the observed noisy image (right) is a sum
of a clean image (left) with independent Gaussian noise (middle).

where IN is an N ×N identity matrix and σ2 > 0 denotes the variance of the each dimension of the
Gaussian random variable. (Refer to figure 1 for an illustration of the corruption model.)

Solving the denoising problem involves finding a function f : RN → RN such that a noisy
observation y can be mapped to a good estimate of x, i.e f(y) ≈ x. We say that f(y) is a good
denoised image if the squared error ||x− f(y)||22 between the clean image x and the denoised image
f(y) is small. We can assume that signal x and noisy observation y are realizatiosn of a random
variable X Y respectively. The denoising function that is optimal across all realizations of X and Y
is defined as the function f that minimizes the squared error:

fopt := argmin
f

EX×Y ||x− f(y)||22, (2)

where the expectation E is taken over the joint distribution of clean and noisy images X × Y .

If the noise level (or noise standard deviation) σ is not known to us and the denoiser is expected to
work for a range of noise levels, then the problem is called blind denoising. In blind denoising, we
assume that σ is uniformly distributed between 0 and a maximum value σmax. This will change
the distribution of Y to include the change in noise levels and the expectation in equation 2 will
implicitly be taken over σ as well. If we do not make assumptions on the distribution of X , then we
approximate the expectation in 2 by the empirical expectation over a dataset of noisy and clean image
pairs {(yi, xi)}ni=1 :

f̂opt := argmin
f

1

n

n∑
i=1

||xi − f(yi)||22, (3)

where n is the number of examples in our dataset.

Perhaps the simplest solution for a denoising problem is the Wiener filter, where the optimization
problem in equation 2 is simplified by constraining f and X . The Wiener filter assumes that the
signal X is translation invariant and follows a Gaussian distribution and the denoised image f(y) is
a linear function of the noisy image y f (Wiener, 1950). The Wiener filter computes the denoised
value of a particular noisy pixel as a weighted average of the noisy pixel values in its neighbourhood.
The neighbourhood over which the Wiener filter averages increases with increasing noise level, as we
would expect. The main limitation of Wiener filtering is that it smooths the edges in images and thus
does not produce aesthetically pleasing images.

The smoothing of edges in the Wiener filter is because its linear nature - the same filter is applied
everywhere in the image without adapting to the underlying image content. To adapt to the image
content, the denoising function f has to be nonlinear. The central idea behind many nonlinear
denoisers is to find a smart scheme to separate noise from the signal. This separation is difficult
to achieve in the pixel domain, but can be achieved with a transformation to a carefully chosen
space. In this transformed space, often, small coefficient values correspond to noise and large values
corresponds to signal and thus, noise can be separated from signal using nonlinear thresholding
operation. The thresholded coefficients can be transformed back to the pixel space using the inverse
transformation (Donoho & Johnstone, 1995; Simoncelli & Adelson, 1996; Chang et al., 2000). From
a linear algebraic prospective, the equivalent operation implemented by such a denosier can be
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Noisy training image,
σ = 10 (max level)

Noisy test image,
σ = 90

Test image, denoised
by CNN

Test image, denoised
by BF-CNN

Figure 2: Denoising performance of a CNN and a BF-CNN when tested on a noisy image far outisde
its training range. Both the CNN and BF-CNN were trained on σ ∈ [0, 10] and were tested on a noisy
image with σ = 90, which is far outside the training range. BF-CNN is able to achieve state-of-the-art
performance in this task, while CNN barely denoises the image. Image reproduced from Mohan et al.
(2019).

thought of as a projecting noisy input to a lower-dimensional manifold containing the actual signal.
In section 4 we will see that modern deep learning methods also denoise images by implementing a
similar projection based mechanism.

3 CONVOLUTIONAL NEURAL NETWORK BASED DENOISING

For a noisy input image y ∈ RN with N pixels, the denoising function f : RN → RN computed by
a neural network is

f(y) =WLR(WL−1...R(W1y + b1) + ...+ bL−1) + bL, (4)
where Wi is called the weight matrix and bi is bias vectors at layer i. The function R(z) = max(0, z)
represents a rectified linear unit (ReLU) non-linearity. ReLU is applied element wise to any tensor
input. If the neural network is convolutional, Wis are restricted to be convolutional matrices. The
process of finding the optimal parameters Wis and bis by solving the optimization problem in
equation 3 is called training. Neural networks that are trained on large databases of noisy and
clean natural images to minimize mean square error achieves current state-of-the-art denoising
performance (Zhang et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018).

When training a neural network, we need real data to approximate the expectation in 2 and arrive
at equation 3. Since the expectation in equation 2 is over the joint distribution of X × Y we needs
pairs of noisy and clean images to approximate the expectation. While we have datasets with clean
images (Martin et al., 2001), we have very limited data on pairs of noisy and clean images. To
overcome this obstacle, we use the clean images from our dataset and use our additive gaussian noise
model (equation 1) to generate corresponding noisy images for training. For blind denoising, we train
on noisy images generated with range of noise standard deviations σ. The range of noise standard
deviations, [σmin, σmax] included in the training images is called the training range of denoiser.

A trained CNN based denoiser (parameterized according to equation 4) generalizes well to new
images not seen during the training and achieves state-of-the-art performance. However, they fail to
denoise well if the test image is corrupted with a noise level not seen during training (refer to figure 2
for a visual example). In Mohan et al. (2019) my co-authors and I showed that this over-fitting to
training noise levels is caused by the additive bias terms (b1, b2, . . . , bL in equation 4) in the network.
Further, we showed that removing these additive bias terms and recomputing the weights enabled
the network to generalize to unseen noise levels (refer to figure 2 for a visual example). We call
the reparameterized CNN with no additive bias terms Bias Free CNN (BF-CNN). For the rest of the
manuscript, our analysis is on BF-CNNs.

4 UNDERSTANDING CNN BASED DENOISERS

The highly nonlinear structure of CNNs makes it difficult to understand its working. However, bias
free CNNs exhibit a special structure that we can exploit to provide some interpretation into the
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Figure 3: Analysis of the SVD of the Jacobian of a BF-CNN for ten natural images, corrupted by
noise of standard deviation σ = 50. (a) Shows the singular value curve for the Jacobian computed for
10 different images. The singular values decrease quickly implying that the network is transforming
the noisy image to a low dimensional space. (b) The histogram of the dot product between left and
right singular vectors corresponding to non-negligible singular values. The dot product is very close
to 1 implying that the matrix is approximately symmetric. (Image reproducted from (Mohan et al.,
2019))

Figure 4: Visualization of the left singular vectors (uis) for two input noisy images (top row and
bottom row). The input images were at noise level σ = 30. The first colum shows the clean image,
the next three column shows singular vectors corresponding to non-negligible singular value and the
last three columns shows singular vectors corresponding to very small singular values. Note that the
singular vectors corresponding to non-negligible singular values looks like the image while the ones
from small singular values looks like noise. (Image reproducted from (Mohan et al., 2019))
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working of these networks. For a given noisy image y, the first layer of a bias free network performs
a linear transform W1y followed by a ReLU R(W1y) = max(0,W1y). The ReLU function sets
negative entries in the input to zero and leaves the positive entries alone. Therefore, for a given input
to the ReLU, the action of ReLU can be thought of as multiplication by a diagonal matrix with 1
corresponding to the positives entries of the input and 0 for the negative entries of input. Hence, the
entire transformation implemented by the first layer R(W1y) is linear for a given input y. Subsequent
layers apply the same transformation again and again and thus the entire function transformation by a
bias free network is a cascade of linear operations for a given input y. That is,

fBF(y) =WLR(WL−1...R(W1y)) = Ayy, (5)

where Ay is the Jacobian of fBF(·) evaluated at y. The subscript on Ay serve as a reminder that this
linear representation depends on the input y and changes for every input.

The action of a ReLU function on a vector z ∈ RN can be characterized by a binary vector vz of size
N with entries 0 and 1. If vz has 1 in the dimension where z is positive and 0 where z is negative,
then R(z) = vz � z where � represents the element wise product operator. Extending this, the
transformation implemented by the bias free network in equation 5 can be completely characterized
by (L − 1) binary vectors corresponding to the (L − 1) ReLU functions in the networks. For the
points in a small region in the input space the binary vector activation patterns of all the ReLUs
remains the same and hence the linear representation remains the same. Thus, given an input noisy
image y the denoising function f(z) = Ayz for all the points z in a neighbourhood of y where the
ReLU activation remains the same. Therefore, the denoising map can be completely characterized by
the Jacobian matrix Ay for a local neighbourhood around y.

This characterization of a highly non-linear neural network by its linear form (or the Jacobian) allows
us analyze the local denoising map using linear algebraic tools. For a given noisy image y, we
can analyze the properties of the denoising map around y using the SVD of the Jacobian matrix:
Ay = USV T , where U and V are orthonormal matrices which span the column space and row space
respectively of Ay and S is a diagonal matrix with singular values. We can express the action of the
network as follows:

fBF(y) = Ayy = USV T y =

N∑
i=1

si(V
T
i y)Ui. (6)

The denoised output fBF(y) lives in a subspace spanned by the vectors U1, U2, . . . , UN .

Our analysis of the SVD of Jacobian matrix over a set of natural images shows that most singular
values are very close to zero (Figure 3a). Therefore, fBF(y) maps to a low dimensional space.
Further, the dot product, uTi vi ≈ 1 when si is non-negligible indicating that ui ≈ vi whenever si is
non-negligible (Figure 3b). Therefore, the Jacobain matrix Ay is approximately symmetric. Since
Ay is symmetric, low rank and has a largest singular value around 1, we can interpret the action of
the network as approximately projection of the noisy signal onto a low-dimensional space. We verify
that the low-dimensional space depends on the signal by visualizing the basis vectors of this space
(Figure 4) (Mohan et al., 2019).

5 FUTURE WORK: HOW DOES THE NETWORK FIND THIS SUBSPACE?

In section 4 we showed that the action of CNN based denoiser can be interpreted as a projection to a
low dimensional space. The projection matrix or the Jacobian Ay , is composed of weight matrices of
the network and binary activation patterns of ReLU. The binary activation patterns of ReLU depends
on the input and hence the projection matrix or the space changes for each input. Future work includes
exploring questions on how the network finds this space. Specifically:

• Why does this cascade of weight matrices and ReLU activation patterns results in projection
matrices?
• How does rows of different weight matrices combine to produce the final projection matrix?

What is encoded in each of these weight matrices?

Answering these questions will help us better understand the denoising mechanism implemented by
neural networks. This understanding will enable us to design faster and more robust networks.
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