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1 Introduction

Throughout the civilizations, we have found many creative uses for hoops. Made of reeds,
vines, stiff grasses or wood, they have been used in ritual dances, exercises, and as a child’s
game. There are depictions of children playing with them in ancient Egyptian art, and a
Greek krater painted around 500 B.C.E. portrays Ganymede, the most beautiful of mortals,
running with a hoop. Hoops were also used in Medieval times. For example, “hooping”
became a popular sport in England around the 14th century, until doctors at the time
started blaming it for practically everything, from back trouble to heart attacks. In more
modern times, hoops made of bamboo were commonly used as exercise equipment in 20th
century Australian schools and homes. In 1957, Joan Anderson brought one with her when
she immigrated from Australia to California. She recognized its potential, coined the term
“hula hoop” for the resemblance between the hip motion needed to keep the hoop up and
the Hawaiian hula dance, and started introducing it to her friends. One such “friend”, the
co-founder of the toy company Wham-O, stole her idea and manufactured the modern plastic
hula hoops that became so popular in America.

While many of us have played with hula hoops as children, we would have a hard time
explaining exactly how we kept the hoop from falling off our waists, arms, legs, or (for the
more talented amongst us) even noses. Is it better to move around very fast, very slowly,
or somewhere in between? Does the size of the hula hoop matter? Do you have to make
different types of movements to keep the hula hoop around your waist than, say, around
your arm? Can you get a hula hoop to stay up around anything, or can it only twirl around
certain shapes? We say that a hula hoop twirling about a rotating body is in equilibrium
when the hula hoop will keep twirling around the same place on the body as long as the
body doesn’t change how it is moving. In other words, if you have found an equilibrium
point for your hula hoop and you keep doing exactly what you’ve been doing to get it there,
the hula hoop will not fall.

But what happens if, once the hula hoop is twirling around you in equilibrium, someone
comes along and tries to knock the hoop off you? How easy would it be for someone to
knock it off? Generally, we want to know how easy it is to find equilibria, and, once you’ve
found them, how easy is it to remain in equilibrium. This is referred to as the stability of
the equilibria.

To answer the questions I just asked, we need to model the motion of a hula hoop about
a rotating body and use this model to deduce information about the system’s equilibria and
their stability. That is our current research problem. We will use constraint equations and
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Lagrangian dynamics to model a hula hoop twirling about a rotating body. I will explain
what this means and how to do this in section 3.

2 A Simple Model

Figure 1: This is a simple schematic of
a hoop twirling about a rotating upright
rigid body. Here, the rotating body is
a hyperboloid, and the hula hoop (in or-
ange) is twirling about it.
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Figure 2: This is a block on an incline.
The block feels gravity, friction, and the
normal force.

Modeling a hula hoop twirling about a real person’s body is complicated. People’s bodies
are all unique and they have complex shapes. People are also slightly squishy, not rigid. And
the motions that a person makes to keep the hula hoop up won’t be exactly identical every
time. These things are complicated to study, and so we need to come up with a simpler
model if we want to study that model analytically rather than numerically. Analytical
work allows us to study an exact model rather than a numerical approximation to a model.
Numerical work comes with some innate approximations that cannot be removed. Depending
on the system studied, these approximations could have a great impact on the system’s
dynamics. By simplifying the model such that it can be solved analytically, I can choose
exactly which approximations and simplifications I wish to make, and so ensure that they
are appropriate for the system I am studying. This will allow us greater freedom to identify
the most important effects that keep the hoop from falling, and hence better understand
the fundamental relationships and quantities that describe the hoop’s motion. In short,
analytical work will tell us why and when a hula-hoop stays up, whereas numerical work can
tell us whether it stays up for a specific case. That is why we want a model that ignores things
that are too complicated while making sure that the model remains sufficiently realistic for
us to make conclusions about real humans.

A simple model is as follows: an upright rigid body such as a hyperboloid, cylinder or
cone, rotating in such a way that the body moves in a circle with known frequency and
without spinning about itself. A hoop is then spun about the body. This is illustrated in
figure (1). The hoop could fall off the body, fly off the top of the body, or find an equilibrium
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point. We want to use constraint equations and Lagrangian dynamics to find the path of the
hula hoop as it twirls about a rotating body. In the following section, I will explain what
this means.

A possible future way to check if this model matches reality would be to ask people to
hula hoop in a lab, where their motion (as well as the hoop’s) could be tracked. We could
then compare a real hula hooper’s motions to our model’s predictions for equilibria and their
stability, and see how well they match.

3 Lagrangian mechanics and Constraint equations

3.1 Newtonian mechanics (and it’s limitations)

In this section, I’ll provide the reader with a brief introduction into Lagrangian mechanics
and the use of constraint equations through examples. I will also explain why the constraints
on the hula hoop make the system challenging to solve. If you have taken an elementary
physics course, you are familiar with Newtonian mechanics and free body diagrams, also
called force-balance diagrams. Force-balance diagrams allow us to calculate, for example,
the motion of a block sliding down an incline. To do this, we first identify the forces at work:
there is the gravitational force pointing straight down, the normal force pointing normal to
the incline, and the frictional force pointing up along the incline, as in figure (2). Then,
using a bit of geometry, we can calculate the net force, which will be down along the incline.
Finally, we use Newton’s 2nd law. This law tells us that F (t) = ma(t), where F (t) is the
net force we’ve just calculated, m is the mass of the block, and a(t) is the acceleration of
the block. Once we have F (t) and m, we can solve for a(t). We then have an ordinary
differential equation (ODE) that we may or may not be able to solve. In the case of a block
on an incline, we can solve the ODE and obtain the path of the block down the incline.
However, for systems that are less simple than the one just described, we may end up with
an ODE that cannot be solved analytically. Take, for example, a bead on a curved wire.
The normal force points normal to the wire, and so its direction changes as the bead slides
along the wire. If the wire were straight, the normal force would be easy to calculate, but if
it curves in a complicated way, the normal force could be difficult to find and write down.
This makes the use of a force-balance diagram and Newton’s second law more complicated.
Writing down F (t) will be more difficult, and it might not be possible to solve the resulting
ODE analytically.

3.2 Constraint Equations

Note that for both the block on the incline example and the bead on the wire example, the
normal force is a constraint force. That is, it constrains the block to stay on the incline,
and the bead to stay on the wire. Without this force, both the bead and the block would
have simply fallen straight down under the force of gravity. In both cases, this was also the
force that, due to its time dependence, made the Newtonian mechanics calculation difficult.
We need another method for finding the path of objects in such cases. Fortunately, there
exists another method: Lagrangian mechanics. I will illustrate the key ideas of Lagrangian
mechanics through a worked example.
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Imagine a bead on a parabolic wire, as shown in figure (3). As long as the bead’s position
satisfies the following constraint equation (1), the bead will stay on the wire:

g(x(t), z(t)) = z(t)− x(t)2 = 0, (1)

where the bead’s position at time t is given by (x(t), z(t)), and g(x(t), z(t)) is known as the
constraint function. This is called a constraint equation because it describes the constraint
that the bead remain on the wire. One way to understand equation (1) is to read from it
that the bead’s position must obey the equation of the wire’s parabola.

z

x

Figure 3: A bead (orange oval) on a
parabolic wire. The bead’s position
is given by (x(t), z(t)) = (x(t), x2(t)).
This is an example of a holonomic sys-
tem.
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Figure 4: A coin of radius R and mass
M rolls down an incline. The coin is con-
strained to stay upright, as shown in the di-
agram, but can move freely by rolling (which
is measured by ψ) or twisting (measured by
φ). The axis î points in the direction in
which the coin rolls, and ĵ is perpendicu-
lar to the surface of the coin. When the
coin rolls, it rotates about ĵ. Note that the
change in ψ is equal to the distance rolled
divided by R. This is an example of a non-
holonomic system.

We can make use of this equation to find the path of the bead along the wire. The
first thing we will need is a quantity called the Lagrangian. The Lagrangian is found by
subtracting the potential energy of the system from the kinetic energy. In other words,

L(x, z, ẋ, ż, t) =
1

2
m(ẋ(t)2 + ż(t)2)− 1

2
mz(t). (2)

We recall that along a parabolic wire, z(t) = x2(t). We can substitute this into the
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Lagrangian, as follows:

L(x, ẋ, t) =
1

2
m(ẋ(t)2 + 2x(t)ẋ(t)2)− 1

2
mx(t)2. (3)

Then, the path of the bead along the wire is given by the solution of the following
equations, called the Euler-Lagrange equation for this system:

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0. (4)

If we substitute the Lagrangian from equation (2) into the Euler-Lagrange equation, we
obtain the following ODE:

ẍ(1 + 2x) + ẋ2 + x = 0. (5)

The solution of this ODE is the path of the bead on the parabolic wire.
In this example, we used the constraint equation to re-write the equations describing the

bead’s motion, thus allowing us to phrase the problem with fewer degrees of freedom. We
noticed that we could re-write both x and z in terms of x alone. Thus we were left with only
one ODE to solve. There is another way in which we could have used the constraint equation
and Euler-Lagrange equations to find the path of the bead along the parabolic wire. Instead
of substituting the change of variables z(t) = x(t)2 from the constraint equation directly into
the Lagrangian, we could have written out the following system of equations:

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= λ

(
∂g

∂x

)
(6a)

d

dt

(
∂L

∂ż

)
− ∂L

∂z
= λ

(
∂g

∂z

)
(6b)

g(x(t), z(t)) = 0, (6c)

where g(x(t), z(t)) is the constraint function in equation (1), and λ is a constant called
a Lagrange multiplier. This system of equations is called the constrained Euler-Lagrange
equations. Here, we are treating the constraint equation as an extra equation, to be solved in
conjunction with the Euler-Lagrange equations. We use the method of Lagrange multipliers
to write down the constrained Euler-Lagrange equations. If we substitute the Lagrangian
from equation (2) and the constraint function from equation (1) into this system of equations,
then solve the system, we will obtain the same solution as if we were to solve the ODE in
equation (5). These are two ways in which Lagrangian mechanics can be used to find the
path of objects in a constrained system.

To summarize, constraint equations can suggest a choice of coordinates and be incorpo-
rated into the Lagrangian through this choice of coordinates. They can also become part
of the constrained Euler-Lagrange equations. Will one or both of these options always be
available to us, for every conceivable constraint equation? In the following section, we will
explore two broad classes of constraints.
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3.3 Holonomic and Non-Holonomic Constraints

Constraints can be divided into two categories: holonomic constraints and non-holonomic
constraints. Holonomic constraints, also called geometric constraints, limit where an object
can be. Constraints of this type can be written entirely in terms of position and angle
coordinates. Some examples include our earlier constraints that the block remain on the
incline, or that the bead remain on the wire. This can be contrasted to a non-holonomic
constraint for which it is impossible to write the constraints as a function of position and
angle only. Rather, the constraint equations must depend on velocity and angular velocity.
This distinction has a significant impact when looking to find the path of an object using
Lagrangian mechanics, and so it is worth spending time to understand. I will now describe
an example of a holonomic and of a non-holonomic system that are easy to visualize, in order
to understand the fundamental difference between the two.

Let’s contrast our earlier examples to a non-holonomic system. A hula hoop twirling
about a cylindrical body is a non-holonomic system. However, I will consider a simpler
problem in this subsection: rather than the hula hoop, let’s imagine a twirling penny of
radius R rolling down an incline, as in figure (4). I will focus on this example rather than
the hula hoop because it has fewer variables to keep track of, and is consequently better
for illustrative purposes. If we force the coin to stay upright, we only need two position
coordinates and two angle coordinates to completely describe it. Let us call these variables
q = (q1, q2, q3, q4) = (x, y, ψ, φ), as in figure (4). The position coordinates x and y describe
the distance travelled up or down the incline and the distance travelled across the width
of the incline, respectively. The angle ψ describes the rotation of the coin about the axis
normal to the coin. In other words, if you were to put a stick through the center of the coin
and turn the stick, this would change the value of ψ. The angle φ gives the direction the coin
is pointing in. For example, if φ = 0, the coin is pointing straight down the incline (along
î′). The constraint on this system is the no-slip constraint, which, when projected onto î,
the principal axis in which direction the coin is rolling, and ĵ, the normal to the surface of
the coin, gives the following constraint functions:

g1(q, q̇, t) = ẋ cos(φ) + ẏ sin(φ)−Rψ̇ = 0, g2(q, q̇, t) = ẋ sin(φ)− ẏ cos(φ) = 0. (7)

Note that these constraints contain velocities. How do we know that they must contain
velocities, and that there is no clever trick that would allow us to re-write the constraints in
equation (7) without any velocities? To answer this question, let’s recall that in a holonomic
system, it is possible to re-write the system in such a way as to reduce the total number of
degrees of freedom. In the case of the bead on the wire, the constraint equation (1) gave
us z = x2. So, do we truly need each of the four variables (x, y, ψ, φ) to describe the coin’s
twisting and rolling motion? We need x and y, since the coin can reach any point on the
incline through some combination of twisting and rolling. With enough initial velocity, you
can even make the coin move up the plane. Then, we note that the coin can attain any
angle φ at any values of x and y: simply imagine holding the coin in place and twisting it
to the desired angle. So we have established that we need 3 out of the 4 variables given in
the paragraph above. Can the coin achieve any value of ψ at a given (x, y, φ)?

Suppose we place the coin at the point (q1, q2, q3, q4) = (x0, y0, ψ0, φ0), and that we want to
move the coin without slipping such that it ends up with the same x, y, φ values as before, but
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with ψ = ψ1 instead. To do this, we recall that the change in ψ is equal to the distance rolled
divided by R. So we need to move the coin along a closed path of length R · (ψ1−ψ0 + 2kπ).
A circle of radius (ψ1 − ψ0 + 2kπ)/2π · R works, with k ∈ Z. So, to get the coin into the
position (x0, y0, ψ1, φ0), we roll the coin in a circle of radius (ψ1 − ψ0 + 2kπ)/2π · R, then
adjust φ as needed.

We’ve just shown that we can attain any state (x, y, ψ, φ) using only rolling and twisting
motions, i.e. without slipping. Therefore, the no-slip constraint cannot be used to decrease
the number of variables needed to fully describe the system. We can now conclude with
certainty that the coin on the incline constitutes a non-holonomic system.

3.4 The Euler-Lagrange equations for Non-Holonomic systems

Non-holonomy has significant consequences when looking to solve a system using Lagrangian
dynamics. Our typical way of applying the Euler-Lagrange equations to a constrained system
breaks down when the constraints are non-holonomic, and we must find a different way to
solve [1] [2]. Fortunately, the principle from which the Euler-Lagrange equations are derived,
called the D’Alembert-Lagrange principle or principle of virtual work, remains valid and can
be used on systems with non-holonomic constraints [1]. This principle tells us that constraint
forces do no work. From this, it is possible to work out the Euler-Lagrange equations for
non-holonomic systems, which I will now state.

Let our system have c general non-holonomic constraints of the form gk(q, q̇, t) = 0,
where k = 1, 2, . . . c. Then, for a particle described by the n generalized coordinates q(t) =
(q1, . . . , qn) and q̇(t) = (q̇1, . . . , q̇n), the path q(t) is given by the solution of the Euler-
Lagrange equations:

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= QNP

j +
∑
k

λk

(
∂gk
∂q̇j

)
, (8)

where λk are Lagrange multipliers, QNP
j are any forces not included in the Lagrangian, and

L is the Lagrangian [1].
To understand how to apply equation (8) to a concrete non-holonomic system, we recall

our earlier system: a twirling coin of radius R and mass M rolling down an incline. There
are fewer variables to worry about in this problem than for the hula hoop problem, and
so we can focus on understanding and applying equation (8). Let us take as generalized
coordinates (q1, q2, q3, q4) = (x, y, ψ, φ), as before. Then, if the incline is at an angle α to the
horizontal, the Lagrangian is given by:

L =
1

2
M(ẋ2 + ẏ2) +

1

2
I2ψ̇

2 +
1

2
I3φ̇

2 +Mgx sinα, (9)

where I2 = 1
2
MR2 and I3 = 1

4
MR2 are the moments of inertia of the body about two of the

coin’s principal axes: ĵ, the axis normal to the surface of the coin, and k̂, the axis normal
to the surface of the incline, respectively.

The constraints on this system are as before:

g1(q, q̇, t) = ẋ cos(φ) + ẏ sin(φ)−Rψ̇ = 0, g2(q, q̇, t) = ẋ sin(φ)− ẏ cos(φ) = 0. (10)
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We now have L from equation (9) and gk, k = 1, 2 from equation (10). All the forces in
this system are potential forces, so QNP

j = 0 for this system. We can then use equation (8)
to find q(t) [1]. If we substitute in equations (9) and (10) into (8), we obtain the following
system of equations:

Mẍ = −Mg sinα + λ1 cos(φ) + λ2 sin(φ) (11a)

Mÿ = λ1 sin(φ)− λ2 cos(φ) (11b)

I2ψ̈ = λ1 sinφ (11c)

I3φ̈ = 0. (11d)

Equations (10) and (11) together give us six equations, and there are six unknowns: two
Lagrange multipliers and four coordinates. This system can be solved by first eliminating
the λk from the equations analytically, then using the explicit trapezoid method to solve the
resulting four ODEs numerically.

4 Conclusion

We have constructed a model for a hula hoop twirling about a rotating rigid body and seen
that the constraints on the hoop are non-holonomic. We then learned that the path of objects
moving under non-holonomic constraints can be found by solving a modified version of the
constrained Euler-Lagrange equations. We also practiced using these equations by finding
the path of a coin rolling down an incline. Going forward, we will use these equations to find
the path traced out by a hula hoop as it twirls about a body, as we did for the coin. We can
do this for various bodies and study the hoop’s equilibria and their stability for these bodies.
We will start by considering a cylindrical body, then look at cones and hyperboloids.

However, it will be trickier to find the path of the hula hoop than it was to find the path
of the coin, as more coordinates are needed to describe the hula hoop. To deal with this, we
plan to use quaternions as generalized coordinates to describe the position and inclination of
the hula hoop as it journeys about the hula hooper’s body. However, the Lagrangian for this
system is explicitly time-dependent, which introduces new difficulties. Once these difficulties
have been addressed and the simple model described in section 2 has been solved, we will
look at the effect of the body’s path and inclination: what happens if the body moves in an
oval, or a flower shape, rather than a circle? And what if the body is allowed to wobble,
rather than being always upright? What if it is slanted, or has a funny shape? We hope
to eventually compare our results to the behavior of a hula hoop when used by a real hula
hooper.
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