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Abstract

Maxwell lattices are a subcategory of the newly emergent field of mechanical metamaterials.

Its special periodic construction leaves it some interesting mechanical behavior. Our main result

consists of incorporating spatially-periodic homogenization theory into the Maxwell lattice system to

understand its macroscopic and microscopic behavior.

1 Introduction

Mechanical metamaterials are artificial composite materials with mechanical properties which cannot

be inherited from the single material they are composed of. A famous mechanical metamaterial is

the artificial auxetic material, which has negative Poisson’s ratio. Normally materials have positive

Poisson’s ratio. This means when we elongate such a material in one direction, it shrinks in other

directions to maintain its volume. Although material with negative Poisson’s ratio are not found in

nature, people have creatively constructed auxetic material to get this property. These auxetic materials

are greatly used in daily supplies, like packing bags, body armors and sponge mops. Another example

is the lattice metamaterial. Scientists have found some special lattice metamaterials can sustain forces

on one side, but cannot sustain forces on the other side [6].

Among the large family of mechanical metamaterials, we focus on the 2-dimensional Maxwell

lattices. It is a periodic structure with each vertex connected by 4 bars. Maxwell lattices are interesting

because they satisfy minimal rigidity requirements, thus the lattice has some mechanical instability.

Physicists have discovered that Maxwell lattices have one more floppy mode other than translations in

linear elasticity. This special floppy mode is referred as Guest-Hutchinson (GH) mode. With the GH

mode, Maxwell lattices can be deformed in a nontrivial way without bars changing length to its first

order in the amount of deformation. So far, there has been no complete mathematical explanation of

why such GH mode arises.

How would a mathematician approach this issue of understanding the missing floppy mode? One

tool that can be used to understand this GH mode mathematically is homogenization theory. This

theory is often used to draw the connection between macroscopic and microscopic behavior of a pe-

riodically oscillatory system and it appears very often in analyzing the elastic behavior of composites
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and porous materials. The periodic structures of composites allow tremendous variations on the micro-

scopic scale, for example the rapid oscillations. But if we take composites as a whole material, we get

the macroscopic behavior of this new material by averaging out the rapid oscillations. The behavior

of composites as a whole on the macroscopic scale is called the effective behavior. Homogenization

connects the macroscopic and microscopic behavior of repetitive composites. A Maxwell lattice also

has periodic structures, thus we believe formulating this lattice system in homogenization language

can give a mathematical explanation for its interesting behavior. We also anticipate analyzing the

macroscopic behavior of different Maxwell lattices after applying the homogenization theory.

The paper will be structured as follows. In section 2 and 3, we will give a brief introduction to

Maxwell Lattice and a general introduction to homogenization theory for linear elasticity. We will

view the homogenization theory on the lattice system as an optimization problem and give its primal

and dual form. In section 4, we will incorporate homogenization theory into the Maxwell lattice system

to see what effective behavior Maxwell lattice has. We will end the paper with several open questions

we are working on.

2 Introduction to the Maxwell lattice and Guest-Hutchinson mode

In this section, we will briefly introduce the Maxwell lattice system and the Guest-Hutchinson mode,

with an example of such mode in the Maxwell lattice system.

A Maxwell lattice is a special bar framework. A bar framework consists of vertices and bars. It

is similar to a graph, but with edges replaced by bars, whose length cannot be changed. As you can

imagine, if a bar framework has more bars in it, then it is harder for us to deform the framework

without breaking any of these bars. If a bar framework can be deformed without breaking the bars,

we call the framework non-rigid, and this special deformation is referred as a floppy mode. A 2-

dimensional Maxwell lattice system has each vertex connected by 4 bars. Examples of Maxwell lattices

are shown in Figure 1. Such systems are non-rigid and always have floppy modes.

Figure 1: (Replotted from [5]) Figure a and b both have each vertex connecting 4 bars, thus they are
Maxwell lattices. Figure a is a square lattice. It is non-rigid and we can deform every vertex with a
same amount in the horizontal direction. Figure b is a standard kagome lattice. It is also non-rigid
with a floppy mode shown in green arrows.
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The Guest-Hutchinson(GH) mode is a special floppy mode in the first-order behavior of periodic

lattice structures. When studying the first-order behavior of a lattice system, physicists usually relate

deformation of vertices and bond extensions using linear algebra. Consider a Maxwell lattice with N

vertices and 2N bars in the unit cell. For example, the square lattice has 1 vertex (any vertex) and 2

bars (one horizontal and one vertical bar) in the unit cell. We can write displacements of vertices as a

vector ~u ∈ R2N and the first-order extensions of bars as another vector ~e ∈ R2N . For the square lattice,

elements in ~u are horizontal and vertical deformation of the only vertex in the unit cell. And ~e consists

of the first-order extensions of the horizontal and vertical bars.

The linear algebra relationship between ~u and ~e is ~e = C~u. The matrix C can always be determined

by the geometry of each lattice system and is referred as the compatibility matrix. For the Maxwell

lattice, this compatibility matrix C is always a square matrix, since ~u and ~e are both in R2N . We can

also relate tensions ~t ∈ R2N on bonds and forces on vertices ~f ∈ R2N in a similar form ~f = Q~t. The

geometry of the lattice system will always give C = QT [5].

The null space of the compatibility matrix C are the first-order floppy modes. Translations in

horizontal and vertical directions are trivial floppy modes, so they are in the kernel space of the

compatibility matrix C. Rigid rotations are ruled out because they are not periodic. However, Guest

and Hutchinson [2] discovered that there is at least one floppy mode other than the two translations

as a replacement of rotation in dimension 2. In matrix language, this tells that the compatibility matrix

C always has a null vector other than horizontal and vertical translations. This null vector is named

as Guest-Hutchinson (GH) mode. Figure 2 gives a non-trivial example of GH mode in the standard

kagome lattice.

Figure 2: (Replotted from [3]) The dotted lines are the undeformed standard kagome lattice; the solid
lines are the non-trivial Guest-Hutchinson mode for the standard kagome lattice. In the deformed
lattice, there are some vertices still stay at the same position, while the others move with different dis-
placements. And the GH mode is periodic with a different periodicity compared to the non-deformed
standard kagome lattice.
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The GH mode is important because it corresponds to non-trivial self-stress. Self-stresses are the

null space of the equilibrium matrix Q. The relation Q = CT ensures every non-trivial GH mode will

give a non-trivial self-stress. The existence of non-trivial self-stresses tells us that the bars are under

tension or compression even though all vertices are at equilibrium. From an engineering perspective,

self-stresses are dangerous because materials encounter abrasion without loads on them. Studying the

GH mode gives a way to analyze these self-stresses.

3 Introduction to homogenization theory

In this section, we give a general introduction to homogenization theory to see how it connects the

microscopic and macroscopic behavior of some composite materials. In linear elasticity theory, we

would like to solve the corresponding deformation u : Ω→ Rn of a specific material given a body force

f : Ω→ R on some domain Ω ⊂ Rn. The governing equation is

∇ · (a(x)e(u)) = f(x) u ∈ H1(Ω) (.)

with some proper boundary conditions. The symmetric gradient e(u) is defined as 1/2
(
∇u+ (∇u)T

)
.

We refer a(x) as the Hooke’s coefficient and it is a 4-tensor. In a spring system, the Hooke’s coefficient

times deformation gives tension. Similarly in linear elasticity, a(x)e(u) is the stress at point x. Usually

a(x) is spatially dependent. So for composites, a(x) can take different values on different regions. For

example, in Figure 3, we consider a 2d composite made by one material in square M and filled in with

another material in the remaining part F . The whole domain is Ω = (0, 1)× (0, 1). A simple choice of

a(x) with different constants on M and F is

a(x) =

a1I x ∈M

a2I x ∈ F
(.)

where I is the identity 4-tensor.

Figure 3 gives a concrete example of this choice of a(x). We can always solve (3.1) on Ω if a1, a2

are both positive. More interestingly, we can use Ω as a building block and assemble it periodically to

get a N ×N block material ΩN . We care about the behavior as N →∞ when ΩN is given a boundary

load, and the study of this kind of limit behavior is called homogenization theory. Each small block

in ΩN has its own microscopic displacement to sustain the overall boundary force. For large N , the

microscopic displacement of every block averages to some macroscopic displacement. We can now

view ΩN as a whole piece with some new Hooke’s constant a∗, and it sustains the boundary force with

the averaged macroscopic displacement. Homogenization theory gives a way to find this new Hooke’s

constant a∗.
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Figure 3: (Figure 1.1 and 1.2 are replotted from [1]) The left plot has 4 × 4 unit cells and the right
plot has 8 × 8 unit cells. Squares in Figure 1.1 and Figure 1.2 has Hooke’s coefficient a(x) = a1. The
rest part has Hooke’s coefficient a(x) = a2. As N gets larger, a(x) quickly oscillates between a1 and a2.
And the corresponding solution to (3.1) has rapid oscillation.

As N →∞, this N ×N block looks very similar to a periodic lattice. So we believe homogenization

is a promising tool to explain the mysteries in Maxwell lattice.

Now we give the formal math formulation of homogenization theory. We would like to solve the

problem

∇ · (a(x/ε)∇uε(x)) = f(x) uε ∈ H1(Ω) (.)

with some proper boundary conditions. We assume a(y) is periodic in Rd, and Q is the smallest period.

Q is usually a cube, like the above unit cell Ω. Thus for small ε, a(x/ε) oscillates rapidly with period

ε. The limit N to infinity becomes the limit ε to 0+. Each ε gives a solution uε. As ε→ 0+, solutions uε

converges weakly to some u∗(x) in H1(Ω), where u∗(x) solves

∇ · (a∗∇u∗(x)) = f(x) (.)

with the same boundary condition as in (3.3). We refer a∗ as the effective tensor and it is a constant

4-tensor. Finding this effective tensor a∗ is the so-called cell problem.

The fact that a∗ is a constant is not easy to see. We know that given deformation u, the stored

elastic energy on Q can be viewed as

E[u] =

ˆ
Q

〈a(y)∇u(y),∇u(y)〉dy. (.)

The gradient ∇u has rapid oscillations in it, and on the macroscopic scale, we only see its average

ξ =
ffl
Q
∇u(y)dy. We refer this ξ as the average strain, which characterizes the average deformation

over Q. The effective energy with respect to this average strain ξ is 〈a∗ξ, ξ〉, and this energy can be

written as a minimization problem of the elastic energy E[u] over all deformations u with average
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strain ξ.

Eeff(ξ) = 〈a∗ξ, ξ〉 = inf
ξ=

ffl
Q
∇u

 
Q

〈a(y)∇u(y),∇u(y)〉dy (.)

= inf
φ periodic on Q

 
Q

〈a(y)(ξ +∇φ(y)), ξ +∇φ(y)〉dy. (.)

As an optimization problem, it also has its dual form, given by Kohn and Milton[4]

Eeff(ξ) = 〈(a∗)−1σ̄, σ̄〉 = inf
∇·σ=0ffl
Q
σ=σ̄

 
Q

〈a(y)−1σ(y), σ(y)〉dy (.)

with strong duality holds when σ̄ = a∗ξ. We refer σ̄ as the average stress.

Equation (3.8) draws the connection between stress and strain. In a spring system, if the defor-

mation is ∆x, then the force on this spring is k∆x. In homogenization theory, average strain ξ and

average stress σ̄ play the role of deformation and force, in the sense that average stress in the material

is σ̄ = a∗ξ, when the deformation achieves average strain ξ. The optimization part in (3.8) tells us that

the effective energy can also be viewed as the minimum elastic energy of all stress σ(y) with averageffl
Q
σ = σ̄.

4 Our framework of a discrete lattice system

In this section, we will apply homogenization theory to the Maxwell lattice and formulate the linearized

effective energy Eeff of the lattice system as an optimization problem in both primal and dual form.

In a periodic lattice system, we only care about the behavior of vertices and bonds in the unit cell.

For example, in a 2-dimensional lattice with 3 vertices in the unit cell, given a deformation u, we only

consider its deformation at the three vertices x1, x2 and x3. The deformation at each vertex is in R2,

thus this reduces the deformation function u to a 6-vector. The reduction makes the periodic lattice

setting to a linear algebra problem and simplifies the calculation in the optimization problem.

The effective energy Eeff with a given average strain ξ is 〈Aeffξ, ξ〉, where Aeff is the effective tensor.

The effective tensor Aeff plays the role of a∗ in section 3. Every deformation u with average strain ξ

can be written as u = ξx+ φ, and φ is periodic on the unit cell. In the periodic lattice setting, u and φ

are both vectors. Since we are formulating the linearized effective energy, we only consider the bond

extension to its first order. After some calculation, the effective energy Eeff can be written as

Eeff = 〈Aeffξ, ξ〉 = min
φ

∑
i∼j

[√
Aij lij

(
b̂Tijξb̂ij +

φ(xj)− φ(xi)

lij
· b̂ij

)]2

, (.)

where b̂ij ∈ R2 as the unit vector indicating the direction of ijth bond, Aij as the Hooke’s constant of

ijth bond and lij as the length of ijth bond.

The minimization problem over vector φ in (4.1) is the primal problem. It plays the role of (3.7) as

minimizing the effective energy over all deformations with average strain ξ. After some manipulations,
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we can reformulate its dual problem as:

Eeff = max
tij

CT t=0

2
∑
i∼j

tij b̂
T
ijξb̂ij −

∑
i∼j

1

Aij lij
t2ij (.)

with the optimal φ∗ and t∗ij satisfying strong duality

t∗ij = Aij lij〈b̂ij ⊗ b̂ij , ξ〉+Aij lij
~φ∗(xj)− ~φ∗(xi)

lij
· b̂ij . (.)

The dual problem (4.2) maximizes over the tension vector t, with its element tij as the tension on

ijth bond. But not all tensions are allowed, the legal ones should keep all vertices at equilibrium. Thus

we have the constraint CT t = 0.

The above formulation (4.1) and (4.2) incorporates homogenization theory into our lattice type

problem. Now we can use it to analyze the macroscopic behavior of Maxwell lattice.

Theorem 4.1. The effective energy (4.1) can also be written with the average stress σ̄

Eeff = 〈Aeffξ, ξ〉 = min
tij C

T t=0

σij=tij b̂ij⊗b̂ij
σ̄=

∑
i∼j

σij=
∑
i∼j

t∗ij b̂ij⊗b̂ij

1

Aij lij
〈σij , σij〉 = 〈Qeffσ̄, σ̄〉, (.)

where Qeff is another 4-tensor and plays the role as (a∗)−1 in section 3.

The proof resembles Kohn and Milton’s paper [4]. So here we omit the proof.

Theorem 4.1 writes the effective energy Eeff as the smallest energy over all admissible stresses σ(y)

with its average as the optimal stress
∑
i∼j

t∗ij b̂ij ⊗ b̂ij . This theorem is important because it gives a way

to compute the average stress σ̄ on the lattice when we are given a deformation with average strain ξ.

For a given ξ, the optimal microscopic oscillation ~φ in (4.1) gives the optimal tension ~t in (4.3). The

optimal tension then uncovers the effective stress σ̄ in (4.4).

5 Conclusion and open disucssion

Our main work focuses on formulating the lattice system using the homogenization language and

finding its dual form in terms of stress σ. The discrete lattice setting makes this formulation as an

accessible linear algebra problem. The subsequent work will apply this homogenization idea on some

Maxwell lattice to see the effective tensor directly. There are still many interesting questions to be

considered.

(1) What are the macroscopic behavior of different Maxwell lattices? Do they share similarities?

(2) What kind of Maxwell lattices have their effective tensors Aeff positive-definite?

7



(3) If the effective tensor is degenerate, meaning if the effective tensor Aeff has a nonzero null direc-

tion, then there should be some stresses that cannot be held by the lattice. And how does this

affect our duality theory?

(4) In section 2, we introduced the Guest-Hutchinson mode. How does it manifest itself in the ho-

mogenization theory?
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