
A FFT-based convolution method for mixed-periodic Boundary

Condition

Zhe Chen∗1

1Courant Institute of Mathematical Sciences, New York University

April 2020

1 Introduction

Convolutions are widely used to simulate colloidal system. The interactions between colloidal particles in
Stokes flow can be described by their mobility, which is a function of the displacement between them. If
the force applied on particles are given, we can compute velocity of particles by convolution of the mobility
kernel and the force. This convolution is expensive and critical for simulating dynamics of large scale colloidal
particles, which makes it essential that we have a cheap and accurate numerical method for computing them.
Let’s assume we compute a discrete convolution of two periodic sequences with length N in each direction in
d dimensions. If we directly compute the convolution, it would cost O(N2d), which is generally not affordable
in high dimensions. One of the most popular and promising method that we could use to compute them
faster is the Fast Fourier Transform (FFT), which cuts down complexity dramatically to O(Nd log(N)),
since a convolution becomes dot production in Fourier space. In most colloidal system, nevertheless, it’s not
trivial to use finite sequence convolutions to represent convolutions of the force and the mobility kernel. For
example, the force field is usually considered as finitely supported or infinitely periodic, but the periodicity
can be different in different directions, which we call mixed-periodicity, and the kernel can be long-ranged,
which means slow-decaying. Moreover, sample points of velocity might be non-uniform since we only need
velocity of the particles in most cases. In this report, we’ll first introduce a Stokesian system of suspension
colloidal particles above a wall, where x and y direction is periodic but z direction is aperiodic, in section 2.
The kernel in this problem has most of the challenges we meet in practice to do convolutions. Then, a general
library to compute convolutions with mixed periodicity boundary condition, uniform/non-uniform grid and
any kind of kernel is developed in section 3. In the end, we’ll use this library to compute convolutions in the
this colloidal system in section 4.

2 Colloidal particles near a wall and splitting method

For a colloidal system near a wall, many interesting collective phenomenon could happen as a result of long-
range hydrodynamic interactions. For example, if we apply uniform force in x-direction, which is component
of gravity tangent to the inclined plane, on uniform-distributed particles, it will develop finger-shape front
gradually (here’s an intuitive video1 in real physical experiments). Those very small colloidal particles have
equal radius and almost at the same gravitational height, which has the same magnitude with radius, as
a result of balance between Brownian motion and gravity. At t = 0, they are uniformly distributed in a
rectangle strip and given a uniform force in x-direction. Then they moves in this viscous fluid with low
Reynold number. Although it’s uniform in y at the beginning, it gradually develop some special structure
in y, which interests us to simulate it numerically.

In our numerical model, we will suppose that the boundary condition is periodic in y but aperiodic
in x. In the domain Lx × Ly, it’s equal-space meshed. Particle density ρ is given on center point xm =

∗zc1291@cims.nyu.edu
1https://cims.nyu.edu/~zc1291/public/conv/experiment/PureWater_unaligned.mp4

1

https://cims.nyu.edu/~zc1291/public/conv/experiment/PureWater_unaligned.mp4


(m − 1/2)h, yn = (n − 1/2)h, m, n = 1, ..., N . Initial condition is given that ρ = ρ0 in a strip L0
x × Ly at

the left of the domain. Here force f is proportional to particle density ρ in +x direction. Thus velocity v
can be computed by the convolution of ρ and mobility of the particles, i.e. RPY-Swan kernel2 K.

v = K ∗ ρ (1)

However, this so-called RPY-Swan kernel is extremely complicated and long-ranged. Periodicity of this
problem is mixed. It needs to be carefully treated to use FFT-based convolutions.

Our group used to use direct convolution method, paralleled by GPU, to compute velocity. The periodic
BC in y is mimicked by adding finitely many periodic boxes on both side in y of original domain. However,
this method is expensive, O((MN2)2) for M image boxes, and converges slowly because of slow decay of
RPY-Swan kernel. What’s worrying is the slow decay of K, which makes it difficult to simulate large amount
of particles. In this report, I’m trying to take advantage of FFT to build a fast and cheap method to compute
this convolution that has long-range kernel and mixed-periodicity.

3 Set up and basic algorithm

In this section, we’ll develop a general library to compute convolutions with FFT. For simplicity, we first use
one-dimension convolutions to introduce the algorithm, with higher dimension convolutions built on these
elements. For functions f and g, denote h = f ∗ g, by the convolution theorem,

h = f ∗ g = F−1(F(f) · F(g)), (2)

where · denotes inner product, F(·) denote Fourier transform, F−1(·) denotes the inverse Fourier trans-
form and ∗ denotes convolutions.

In computational perspective, generally, we can only compute convolutions of discrete finite sequences,
i.e. evaluations of functions on grids. Mostly, one of the functions should be finitely supported or infinite
but periodic. There are basically two classifications as following and we will use these two as fundamental
elements to use:

1. One of the two functions is periodic, say f is periodic but g is aperiodic,
2. Both f and g are aperiodic, but one of them is, say f , is finitely supported.

3.1 Case 1. One function is periodic

Assume f is periodic in [0, L] and g is aperiodic in R. We evaluate f and g on uniform grids fn = ρ(L ·n/N)
and gn = g(L · n/N). By periodicity of f , the convolution of these two functions would be written as form
of periodic summation,

hn = (f ∗ g)n =

+∞∑
l=−∞

flgn−l =

N−1∑
l=0

flg
N
n−l, (3)

where gNn =
∑∞

p=−∞ g(n− pN), n = 0, ..., N − 1 is defined as periodic summation. Now, convolutions of g

and f in R is discretized as circular discrete convolutions (eq.3) of two N length sequences fn and gNn .
Whether or not we can compute the periodic summation gN easily depends on how fast g decays. We

shall thus consider two cases: in the first we suppose that gn decays very quickly as n → ±∞ and only
several images are needed to compute it, and in the second we suppose that it decays slowly and it cannot
be computed by truncating the periodic summation.

3.1.1 Case 1.(a) Short-ranged function g

For g that is short-ranged, which means g decays fast and usually exponentially, the circular summation can
be truncated as

gN ≈
pmax∑

p=−pmax

gn−pN ,

2https://github.com/CecilMartin/MyResearchRecord/blob/master/doc/Kernel_sedimentation_1.pdf

2

https://github.com/CecilMartin/MyResearchRecord/blob/master/doc/Kernel_sedimentation_1.pdf


where pmax is some threshold chosen based on the decay of gn. If gn really does decay quickly, then we can
choose pmax to be small without incurring a large error. By making this approximation, we may compute
gN in O(Npmax) operations, which is small enough but still gives good accuracy. We can then compute
f ∗ g in O(N log(N) +Npmax) operations.

3.1.2 Case 1.(b) Long-ranged function g

However, if g is long-ranged, which means it decays slowly. The cutoff has to be really large to avoid big error,
which requires large computational efforts and makes it impossible to reach O(N log(N)). If we are lucky
enough to know analytic Fourier transform of g, however, we could evaluate the continuous Fourier transform
at discrete Fourier transform modes kn = 2πn/L and then we don’t need to deal with slow-decaying periodic
summation.

But that’s not always the case since it’s difficult to get analytic Fourier transform. In section 2, we’ll
introduce a splitting method to help us out through this.

3.2 Case 2. Both functions are aperiodic, but one of them is finitely supported

For aperiodic f and g, the circular discrete convolution does not work. However, a zero-padding trick
can make it happen. Consider f is finitely supported in [0, L] and g is not finitely supported. If we
pad N-length [f0, ..., fN−1] with zeros to be (2N − 1)-length vector f̃ = [f0, ..., fN−1, 0, ..., 0], let g̃ =
[g0, ..., gN−1, g−(N−1), ..., g−1]. Then we compute a circular discrete convolution2 f̃ ∗ g̃ and take the first
N components. That’s exactly the needed convolution h since the right-most non-zero component of f
would not meet the left-most. By this zeros-padding trick, the convolution of two aperiodic functions, one
of which is finitely supported, could be solved by a circular discrete convolution and then solved quickly by
FFT. Actually, in implementation, I double zero-padding it to 2N length rather than 2N − 1 to keep length
of vector to be power of 2 to benefit FFT algorithm, so that g̃ = [g0, ..., gN−1, g−N , g−(N−1), ..., g−1]. Thus,
if one of the functions is finitely supported, the convolutions can be done really quickly by zero-padding and
FFT.

4 Application of this convolution library on the colloidal system

To simulate the colloidal system in section 2, we need to compute the convolution (eq. 1). We introduce
two methods in this section using the convolution library.

4.1 Truncate the periodic summation

First, we can easily develop a method that is equivalent with direct convolutions that uses extra periodic
boxes, but uses FFT instead.

In y-direction, it’s periodic for ρ but aperiodic for K. Hence we can use 3.1 in the convolution library. If
we truncate periodic summation in eq.(3) at M on both sides, KN

n =
∑M

p=−M K(n− pN), then this circular
discrete convolution in eq.(3) is equivalent with the direct convolution that has M image boxes on both
sides. In x direction, it’s aperiodic and we use 3.2 in the library. Thus, the algorithm is to first compute
truncated periodic summation in y direction and then compute 2D FFT to get the convolution. We verify
with numerical tests that this is equivalent to direct convolution method but with much less computation.

4.2 Split the long-range kernel

In this sub-section, we consider how to deal with the slowly-decaying kernel. As we stated in 3.1.2, if the
analytic Fourier transform of the Kernel is known, the FFT can be used to compute convolutions of periodic
ρ even with a long-ranged K. Unfortunately, the RPY-Swan kernel is too complicated to find its analytic
Fourier transform. It is, however, possible to find the analytic Fourier transform of the RPY-Swan kernel
in the limit as a→ 0+. This limiting kernel KRB is known as the Rotne-Blake kernel. The RPY-swan and
Rotne-Blake kernels are asymptotically the same as (x, y)→∞ because the radius a makes no difference to
the generated velocity at long distances. The way we develop its FT in y direction is shown in this Maple

3



sheet 3. Hence, we can split the kernel into a long-ranged, slowly decaying part, the Rotne-Blake kernel, and
a short-ranged, quickly decaying correction:

KRPY = KRB + (KRPY −KRB).

We can then evaluate v as vl + vs, where

vl = KRB ∗ ρ, and vs = (KRPY −KRB) ∗ ρ.

This is the so-called splitting method. Then it can be computed by the convolution library after splitting.
The convolution in vl is in 3.1.1 in the y direction and the convolution in vs is in 3.1.2 in the y direction.
Both convolutions are in 3.2 in the x direction, as the density ρ has finite support in the x direction.

4.3 Conclusions

By using this convolution library, we can compute the velocity of the particles in mixed-periodic condition
and uniform/non-uniform grids. It is equivalent with direct convolution mathematically, i.e. within machine
error, but much more quickly in O(N log(N)) for truncated periodic boxes. If analytic Fourier transformation
of the kernel or its long-range part is provided, we can compute the velocity with spectral accurate but still
O(N log(N)) complexity. Here we omit numerical results and convergence testing, etc, since there’s no
enough space as a three page report. Code for this project is on Github4.

3https://github.com/CecilMartin/MyResearchRecord/blob/master/doc/RotneBlakeFourier.pdf
4https://github.com/CecilMartin/convolution_fft

4

https://github.com/CecilMartin/MyResearchRecord/blob/master/doc/RotneBlakeFourier.pdf
https://github.com/CecilMartin/convolution_fft

	Introduction
	Colloidal particles near a wall and splitting method
	Set up and basic algorithm
	Case 1. One function is periodic
	Case 1.(a) Short-ranged function g
	Case 1.(b) Long-ranged function g

	Case 2. Both functions are aperiodic, but one of them is finitely supported

	Application of this convolution library on the colloidal system
	Truncate the periodic summation
	Split the long-range kernel
	Conclusions


