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1 Network of springs and dashpots

1.1 Equations of motion

We consider a network of springs and dashpots which connect some masses. Define the following physical
parameters:

Mk = mass at node k

Sjk = spring constant between node j and node k

Djk = dashpot constant between node j and node k

R0
jk = resting length of spring between node j and node k

For a mass k, let N(k) be the index set of masses which are connected to mass k. Let Xk and Uk be the
position and velocity vectors of mass k respectively. Define a general external force on mass k to be F k. The
equations of motion for this network of masses connected by springs and dashpots are

Mk
dUk

dt
=

∑
j∈N(k)

Tjk
Xj −Xk

‖Xj −Xk‖
+ F k (1)

dXk

dt
= Uk (2)

Tjk = Sjk

(
‖Xj −Xk‖ −R0

jk

)
+Djk

d

dt
‖Xj −Xk‖ (3)

Equation (1) is a statement of force balance. Notice the total force on mass k is the sum of forces which each

point in the direction from mass j to k, given by the unit vector
Xj−Xk

‖Xj−Xk‖ , with magnitude Tjk. Equation

(2) states simply the definition of velocity for mass k. The last equation is the force magnitude, broken into
the sum of a spring force magnitude depending on its stretching or compression from its rest length R0

jk, and
a dashpot force magnitude proportional to the time rate of change of this stretching or compression.

We can simplify the dashpot force magnitude in (3) by considering the time derivative of the square of
the displacement and using the chain rule:

d

dt

(
‖Xj −Xk‖2

)
= 2‖Xj −Xk‖

( d
dt
‖Xj −Xk‖

)
.

By the product rule, the left hand side becomes:

d

dt

(
‖Xj −Xk‖2

)
= 2(Xj −Xk) · (U j −Uk)

Combining these two equations gives a formula for the time derivative of the displacement:

d

dt
‖Xj −Xk‖ =

Xj −Xk

‖Xj −Xk‖
· (U j −Uk)

We can then equivalently express the equations of motions as:

Mk
dUk

dt
=

∑
j∈N(k)

Tjk
Xj −Xk

‖Xj −Xk‖
+ F k (4)

dXk

dt
= Uk (5)

Tjk = Sjk

(
‖Xj −Xk‖ −R0

jk

)
+Djk

Xj −Xk

‖Xj −Xk‖
· (U j −Uk) (6)

Notice that the force magnitude for the dashpot involves the component of the velocity in the direction of
spring, which seems to make sense!

The next question we need to answer is how to approximate these equations on a computer. We are
modeling a system which involves space and time, but since the masses are already discrete spatial entities,
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we just need to worry about approximating the temporal dynamics numerically. To do this, pick some small,
discrete timestep ∆t > 0. For the forward Euler method, we use an approximation to the time derivative
of the form:

dU

dt

∣∣∣
t+∆t

≈ U(t+ ∆t)−U(t)

∆t
,

and evaluate the right hand side of the equations of motion at time t. Explicitly, this becomes:

Mk
Uk(t+ ∆t)−Uk(t)

∆t
=

∑
j∈N(k)

Tjk(t)
Xj(t)−Xk(t)

‖Xj(t)−Xk(t)‖
+ F k(t)

Xk(t+ ∆t)−Xk(t)

∆t
= Uk(t+ ∆t)

Tjk(t) = Sjk

(
‖Xj(t)−Xk(t)‖ −R0

jk

)
+Djk

Xj(t)−Xk(t)

‖Xj(t)−Xk(t)‖
· (U j(t)−Uk(t))

These equations allow us to first compute Uk(t + ∆t) from the velocities and positions at time t, and then
use this velocity to compute Xk(t+ ∆t).

We can alternatively evaluate the right hand of the equations of motion at time t+ ∆t. This approach is
the backward Euler method. To state this method, we just shift the time by ∆t:

Mk
Uk(t)−Uk(t−∆t)

∆t
=

∑
j∈N(k)

Tjk(t)
Xj(t)−Xk(t)

‖Xj(t)−Xk(t)‖
+ F k(t)

Xk(t)−Xk(t−∆t)

∆t
= Uk(t)

Tjk(t) = Sjk

(
‖Xj(t)−Xk(t)‖ −R0

jk

)
+Djk

Xj(t)−Xk(t)

‖Xj(t)−Xk(t)‖
· (U j(t)−Uk(t))

Backward Euler is more complex to implement because the unknowns appear on the right and left hand
side of the discretized equations of motion. This setup results in a nonlinear system to be solved at every
timestep, and we can use for example Newton’s method to solve this.

1.2 Modeling the interaction with the ground

The ground can be generically modeled as a one–dimensional curve in two dimensions, or a two–dimensional
surface in three dimensions. For example, a planar surface for the ground can be specified as:

aX1 + bX2 + cX3 = 0

with normal vector n = [a, b, c]T . A more general equation for the ground takes the form:

H(X1, X2, X3) = H(X) = 0.

To model some sort of force that the ground exerts on each mass, we need to know when we are above and
below it. For a given mass at location X in R2 or R3, we say it is above the ground if H(X) > 0 and below
the ground if H(X) < 0. The force that the ground exerts on this mass will only be active when the mass is
below the ground.

As a modeling choice, we make the magnitude of this force proportional to the distance from the mass to
the ground. Set the mass location below the ground to be X0, and take X to be some point on the ground,
i.e. H(X) = 0. Let us take a Taylor expansion:

H(X)−H(X0) = ∇H(X0) · (X −X0) +O(‖X −X0‖2) (7)

A formula to find the distance from a mass at X0 to the ground would be the smallest distance ‖X−X0‖
such that H(X) = 0. This can be stated as an optimization problem:

minimize ‖X −X0‖
such that H(X) = 0.
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We can equivalently minimize the squared distance ‖X −X0‖2, which is sometimes easier to work with, so
let us consider:

minimize ‖X −X0‖2

such that H(X) = 0.

To solve this optimization problem, it is useful to express the vector X −X0 in a new basis containing
V 1 = ∇H(X0)/‖∇H(X0)‖. Assume we are in R3 and pick V 2 and V 3 so that {V 1,V 2,V 3} forms an
orthonormal basis. Then we can write:

X −X0 =

3∑
i=1

(
(X −X0) · V i

)
V i,

and

‖X −X0‖2 = (X −X0) · (X −X0) =

3∑
i=1

|(X −X0) · V i|2.

Using V 1 = ∇H(X0)/‖∇H(X0)‖, we can express:

‖X −X0‖2 =

(
(X −X0) · ∇H(X0)

‖∇H(X0)‖

)2

+

3∑
i=2

|(X −X0) · V i|2. (8)

Now, use (7) to simplify the first term of (8), where we drop the higher order terms in the expansion, and
use the constraint that H(X) = 0. Then the optimization problem can be “approximated” by this new one:

minimize

(
H(X0)

‖∇H(X0)‖

)2

+

3∑
i=2

|(X −X0) · V i|2

such that H(X) = 0.

Now, try to argue geometrically that we can pick X = Xopt so that H(Xopt) = 0 and (Xopt−X0) ·V i = 0
for i = 2, 3. In fact, we can pick Xopt so that Xopt −X0 is parallel to V 1. This would be the solution to
our new optimization problem, with the minimum distance given by:

‖Xopt −X0‖ =
−H(X0)

‖∇H(X0)‖
.

In summary, we use −H(X0)/‖∇H(X0)‖ to approximate the distance from X0 to the ground. The force
from the ground will be proportional to this with some constant Sground, in the direction of the normal vector
to the surface H(X) = H(X0) evaluated at X0, which is precisely V 1. Putting all this together, the force
from the ground is

F ground(X) =

{
0 if H(X) ≥ 0

−Sground
H(X)
‖∇H(X)‖

∇H(X)
‖∇H(X)‖ if H(X) < 0

We now wish to describe the effect of friction from the ground. For this we need the tangential velocity
U (tan) which can be obtained by projecting the velocity onto the vectors spanning the tangent plane to the
ground. Generically, the projection onto the space of vectors orthogonal to some unit vector V is

I− V V T ,

where I is the identity matrix. Note that we already have the normal vector at point X to the ground, given
by ∇H(X)/‖∇H(X)‖. So, the projection onto the tangent plane to the ground at point X is given by the
matrix

I− ∇H(X)

‖∇H(X)‖
∇H(X)T

‖∇H(X)‖
,
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and then the tangential velocity can be computed by applying this matrix to the velocity vector:

U (tan) = U − ∇H(X)

‖∇H(X)‖
∇H(X) ·U
‖∇H(X)‖

.

The frictional force should be proportional to the magnitude of the normal force exerted on the mass, which
is precisely |F ground(X)|, with some constant of proportionality µfriction. Its direction should be opposing

tangential motion, i.e. in the opposite direction of U (tan). Putting these together, we can explicitly write
the frictional force as

F friction(X) =

{
0 if H(X) ≥ 0

−Sground µfriction
H(X)
‖∇H(X)‖

U(tan)(X)

‖U(tan)‖ if H(X) < 0

1.3 Rigid body motion

Going back to the equations of motion for a collections of masses connected by springs, define total mass M ,
position of the center of mass Xcm, and velocity of the center of mass U cm as follows:

M =
∑
k

Mk, MXcm =
∑
k

MkXk. MU cm =
∑
k

MkUk.

Notice that we have:

dXcm

dt
= U cm.

To get a differential equation for the velocity of the center of mass, take (4) and sum over k. Notice that the
terms: ∑

k

∑
j∈N(k)

Tjk
Xj −Xk

‖Xj −Xk‖
= 0,

since each term appears twice with opposite sign, and Tjk = Tkj . So we have derived:

M
dU cm

dt
= F =

∑
k

F k.

To summarize, the equations of motion for the center of mass are:

M
dU cm

dt
= F =

∑
k

F k (9)

dXcm

dt
= U cm. (10)

Notice that we haven’t made any assumptions about rigidity, and the spring forces are not involved in
determining the motion of the center of mass. We can also derive formula for the angular momentum L of
the system about its center of mass, who’s time derivative is the torque τ . The definition of the angular
momentum is:

L(t) =
∑
k

Mk(Xk −Xcm)×Uk.

Notice that

0 =

(∑
k

MkXk −MXcm

)
×U cm =

∑
k

Mk(Xk −Xcm)×U cm, (11)
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so the angular momentum can equivalently be written as:

L(t) =
∑
k

Mk(Xk −Xcm)× (Uk −U cm).

To derive an equation for the evolution of angular momentum over time, differentiate the above formula. We
obtain two terms, one of which vanishes:

(Uk −U cm)× (Uk −U cm) = 0,

and we have

dL

dt
=
∑
k

(Xk −Xcm)×
(
Mk

dUk

dt
−Mk

dU cm

dt

)
=
∑
k

(Xk −Xcm)×Mk
dUk

dt
.

The second equality from above comes again from (11). Equation (4) can be substituted into the above
equation. After some further manipulation, we arrive the formulas:

dL

dt
= τ =

∑
k

(Xk −Xcm)× F k

L =
∑
k

Mk(Xk −Xcm)× (Uk −U cm).

Now, we make the assumption that our body is rigid. Then, the motion of each mass in the body at time t
is determined by the velocity of the center of mass U cm(t) and the angular velocity Ω(t) of the whole body
about its center of mass. Explicitly this is given by the following formula:

Uk(t) = U cm(t) + Ω(t)× (Xk(t)−Xcm(t)). (12)

From this formula we can derive a relationship between L and Ω. Substituting (12) into the definition for
the angular momentum, we obtain:

L =
∑
k

Mk(Xk −Xcm)× (Ω× (Xk −Xcm)).

An application of the vector identity a× (b× c) = b(a · c)− c(a · b) gives us the following formula,

L(t) = I(t)Ω(t), (13)

where I is the moment of inertia tensor defined as follows:

I(t) =
∑
k

Mk

(
‖X̃k(t)‖2I− X̃k(t)X̃k(t)T

)
X̃k(t) = Xk(t)−Xcm(t).

Just to reiterate, I is the moment of inertia tensor and I is the identity matrix. It can be thought of as a
three-dimensional description of the distribution of mass points in our system, about the center of mass.

Exercise 1. Consider four masses in two dimensions, all with same mass, placed on the coordinate axes a
distance r > 0 from the origin. Compute the motion of inertia tensor and provide an interpretation.

We can argue that the moment of inertia tensor is symmetric positive definite under reasonable assump-
tions, i.e.

V · I V > 0 for all V 6= 0,

which implies it is invertible. This is a nice fact; given the angular momentum L(t) and the moment of
inertia I(t), at a given time we can compute the angular velocity by solving system (13), and then update
the velocities of each mass using (12). Let R(Ω(t),∆t) denote the orthogonal matrix defining an exact
rotation at angular velocity Ω(t) for a time ∆t. This matrix is defined later. Below defines a timestep for a
rigid body simulation in detail, from time t to t+ ∆t:
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• initial data Xcm(t), U cm(t), . . . ,Xk(t) . . ., L(t).

• given X̃k(t), compute I(t).

• solve the system I(t)Ω(t) = L(t) for Ω(t).

• using Ω(t), update X̃k(t+ ∆t) = R(Ω(t),∆t) X̃k(t).

• update the center of mass: Xcm(t+ ∆t) = Xcm(t) + ∆tU cm(t).

• update the velocity of the center of mass:

M
U cm(t+ ∆t)−U cm(t)

∆t
=
∑
k

F k(t+ ∆t).

• update the positions of the individual masses:

Xk(t+ ∆t) = Xcm(t+ ∆t) + X̃k(t+ ∆t)

• update the angular momentum:

L(t+ ∆t)−L(t)

∆t
=
∑
k

X̃k(t+ ∆t)× F k(t+ ∆t).

Now we discuss the construction of the orthogonal matrix R(Ω,∆t), were we have dropped the time t for
conciseness. Given a position vector X̃ about the center of mass, this matrix will rotate this vector an
amount ‖Ω‖∆t, in radians, in time ∆t. The part of the vector that will not be affected by the rotation will
be its projection onto the unit vector in the direction of Ω, namely:

Ω

‖Ω‖
ΩT

‖Ω‖
X̃ = P (Ω)X̃.

Draw a picture to see this!! Expressing

X̃ = P (Ω)X̃ + (I− P (Ω))X̃,

we can see that the part of X̃ we need to rotate is (I− P (Ω))X̃. Using this vector we construct a basis for
the plane normal to Ω and through the origin:

V 1 = (I− P (Ω))X̃,

V 2 =
Ω

‖Ω‖
× (I− P (Ω))X̃ =

Ω

‖Ω‖
× X̃.

Again, drawing a picture is a really good way to see this. Notice that this basis {V 1,V 2} is not necessarily
orthonormal. . . its important to maintain the correct magnitudes of the vectors here. Instead ‖V 1‖ = ‖V ‖2,
and these norms are not necessarily equal to one. Now any vector V in this plane can be expressed as a
linear combination:

V = α1V 1 + α2V 2.

In particular, the basis vector V 1, rotated by an amount ‖Ω‖∆t, can be written as

cos(‖Ω‖∆t)V 1 + sin(‖Ω‖∆t)V 2.

This rotated vector is precisely the part of X̃ which rotates about the center of mass. The orthogonal matrix
can be expressed as:

R(Ω,∆t)X̃ = P (Ω)X̃ + cos(‖Ω‖∆t)(I− P (Ω))X̃ + sin(‖Ω‖∆t) Ω

‖Ω‖
× X̃.

Exercise 2. Show that R(Ω,∆t) is an orthogonal matrix.
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2 Chemical kinetics

2.1 Law of mass action

Consider the reversible reaction

A+B → AB

AB → A+B

in a well–mixed solution. The number of occurences of the forward reaction per unit time per unit volume
is proportional to the concentrations of A and B, denoted [A] and [B] respectively. The proportionality
constant is called k1 and is also referred to as the rate constant for this reaction. The rate constant for the
reverse reaction is k2 and the concentration of AB is similarly denoted [AB]. Then,

k1[A][B] = number of occurences of the forward reation, per unit time per unit volume

k2[AB] = number of occurences of the reverse reation, per unit time per unit volume

The units of concentration we use are number of molecules per unit volume. The number of molecules is a
pure number, which means it is unitless. Chemists use number of moles per unit volume, with Avagadro’s
numbers as a conversion factor between number of moles and number of molecules.

The definitions above implicitly provide units for the rate constants k1 and k2. For the forward reaction,
the units are:

k1

(
1

volume

)2

∼ 1

volume · time
,

implying

k1 ∼
volume

time
.

A similar argument shows that the units of k2 are time−1. We can write a system of differential equations
for the concentrations:

d

dt
[A] = −k1[A][B] + k2[AB]

d

dt
[B] = −k1[A][B] + k2[AB]

d

dt
[AB] = k1[A][B]− k2[AB].

Inspection of these equations show that [A∗] = [A] + [AB] and [B∗] = [B] + [AB] are special quantities that
do not change in time. You can see this by adding either the first or second equation above with the last
equation to obtain

d

dt
([A] + [AB]) =

d

dt
([B] + [AB]) = 0.

The quantity [A∗] can be interpreted as the total concentration of [A] in the system, in either form A or AB.
A similar interpretation follows for [B∗].

There are some constraints on these concentrations. In particular, concentrations are always nonnegative.
This implies [AB] ≤ [A∗] and [AB] ≤ [B∗], which is summarized as

[AB] ≤ min([A∗], [B∗]). (14)

In words, this inequality says that the concentration of AB is restricted by “total” concentration of A or B in
the system, whichever is smaller. The equations can be reduced to one equation with one unknown, namely
[AB]:

d

dt
[AB] = k1 (([A∗]− [AB])([B∗]− [AB])−K[AB]) , (15)
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with K = k1

k2
. Note that K has units of concentration. Let us look for a steady state of the equation, i.e. a

value of [AB] so that d
dt [AB] = 0:

0 = k1 (([A∗]− [AB])([B∗]− [AB])−K[AB]) .

We can gain some insight by separately plotting the line defined by K[AB] and the parabola defined by
([A∗]− [AB])([B∗]− [AB]). While this line and parabola intersect in two places, only one of the intersections
is a “permissible” value for the steady state, which satisfies the inequality (14). We call this steady state
solution [AB]∞. By looking at the graph of the parabola and line, you can show:{

d
dt [AB] > 0 if 0 ≤ [AB] < [AB]∞
d
dt [AB] < 0 if [AB]∞ < [AB] < min([A∗], [B∗]).

This means that [AB]∞ is a stable steady state, in the sense that if [AB] is smaller than [AB]∞, its derivative
in time in positive so it will tend towards its steady state. On the other hand, if [AB] is greater than [AB]∞,
its time derivative is negative and it will still tend toward the steady state.

We can solve the ordinary differential equation for x(t) = [AB](t) analytically in this case. Take x1 and
x2 to be solutions to the steady state equation we considered above, where we have now canceled out k1:

([A∗]− [AB])([B∗]− [AB]) = K[AB].

Let x1 = [AB]∞ so that x1 < x2. Notice also that:

0 < x1 < min([A∗], [B∗]) < max([A∗], [B∗]) < x2.

Using x, x1, and x2 we can rewrite (15) as

dx

dt
= k1(x1 − x)(x2 − x).

Now we use a trick! Notice that

d

dt

(
x1 − x
x2 − x

)
= −(x2 − x1)k1

(
x1 − x
x2 − x

)
by the quotient rule, so the function (x1 − x)/(x2 − x) satisfies a linear differential equation which has an
exponential as the solution: (

x1 − x(t)

x2 − x(t)

)
=

(
x1 − x(0)

x2 − x(0)

)
exp(−(x2 − x1)k1t).

Since x2 > x1, this exponential is decaying. Check to see that as t→∞, we have x(t)→ [AB]∞.

2.2 Microscopic mass action
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